Welcome Guest! please  Login

ISSN 2457-9459 (Online)
ISSN-L 0576-9787 (Print)


2023

Journal Citation Reports
Impact factor 2023: 1.3
5-Year Impact Factor: 1.2
Article Influence® Score: 0.140
Ranked 9 out of 23
MATERIALS SCIENCE, PAPER & WOOD (Q2)

Scopus
CiteScore 2023: 2.3
SNIP: 0.405

SCImago
SJR: 0.264
H-Index: 42
Ranked Q3

 

Title
A biosorbent material from Brahea edulis palm leaves – application to amoxicillin adsorption
Authors
KHEIRA DJELLOULI DELLA, GHANIA HENINI and YAKHLEF LAIDANI

Received January 31, 2023
Published Volume 57 Issue 7-8 July-August
Keywords characterization, biosorbent, adsorption, natural fibers, Brahea edulis, Amoxicillin

Abstract
In this study, fibers from the leaves of Brahea edulis palm (BEF) have been successfully used as a cheap, sustainable and eco-friendly biosorbent to remove the antibiotic Amoxicillin (AMX) from an aqueous solution using a batch process. This pharmaceutical product is present in domestic and industrial waste water. The characterization of BEF was carried out by X-ray diffraction (XRD), scanning electron microscopy (SEM) and Fourier Transform infrared spectroscopy (FTIR). The results of XRD showed that BEF has a semicrystalline structure. SEM images revealed its morphology, surface structure and porous nature. FTIR results showed the presence of different functional groups (hydroxyls, carboxyls, amines, etc.). Several physicochemical parameters, such as porosity, ash content, moisture content, and isoelectronic point (pHpzc), were analyzed. The batch biosorption process of Amoxicillin by BEF was monitored with a UV-visible spectrophotometer at λ = 228 nm. Different operating parameters, such as contact time, biosorbent mass, pH, temperature and adsorbate concentration, were evaluated to find the maximum level of biosorption. The contact time of 90 minutes, 50 mg/L initial Amoxicillin concentration, 1.5 g biosorbent mass and 313 K temperature were found to be the optimum conditions that led to a percentage removal of AMX of 58% at pH 6.5. The maximum adsorption at high temperature indicates that this biosorption process is spontaneous and endothermic.


Link https://doi.org/10.35812/CelluloseChemTechnol.2023.57.79

- Full text available Download



Reviewer Information

Editor Information