Welcome Guest! please  Login

ISSN 2457-9459 (Online)
ISSN-L 0576-9787 (Print)


2023

Journal Citation Reports
Impact factor 2023: 1.3
5-Year Impact Factor: 1.2
Article Influence® Score: 0.140
Ranked 9 out of 23
MATERIALS SCIENCE, PAPER & WOOD (Q2)

Scopus
CiteScore 2023: 2.3
SNIP: 0.405

SCImago
SJR: 0.264
H-Index: 42
Ranked Q3

 

Title
Effect of cellulose nanofibers from red coconut peduncle waste as reinforcement in epoxy composite sheets
Authors
GURUMOORTHY R. RAGHAV, RAJENDRAN ASHOK KUMAR, JAWAHARLAL K. NAGARAJAN, CHANDRAN VIGNESH, FELIZ SAHAYARAJ AROKIASAMY and EDI SYAFRI

Received May 17, 2023
Published Volume 57 Issue 7-8 July-August
Keywords red coconut peduncle waste, cellulose nanofibers, mechanical properties, morphology

Abstract
Organic filler-reinforced thermosetting polymer composites, when contrasted with ferrous, nonferrous, and their respective alloys, offer a broad spectrum of applications. Extensive research has been dedicated to enhancing the intrinsic mechanical and thermal properties of composite materials, with a particular focus on environmentally friendly, recyclable, and biodegradable reinforcements. As a result, the present study involved the preparation of composites by amalgamating cellulose nanofibers (CNFs) sourced from agricultural waste with epoxy to augment the characteristics of polymer composites. The CNFs-reinforced epoxy composites were fabricated via the compression molding process, incorporating filler loadings ranging from 1% to 3% by weight. A comprehensive experimental investigation was conducted on the mechanical properties (tensile, flexural, impact, and hardness) and thermal properties (heat deflection temperature) of these composites. Additionally, scanning electron microscopy was employed to examine the surface characteristics and fractured surfaces of the composites. The results revealed that, among the produced composites, those containing 2 wt% CNFs in the epoxy exhibited superior mechanical properties, outstanding tensile and flexural strengths of 42.8 ± 2 MPa and 106.1 ± 1.6 MPa, respectively, along with an impact strength of 13 ± 2.5 KJ/m² and a hardness rating of 21.2. Notably, these 2 wt% CNFs-reinforced epoxy composites exhibited a 7% increase in the heat deflection temperature, compared to the pristine epoxy resin.


Link https://doi.org/10.35812/CelluloseChemTechnol.2023.57.75

- Full text available Download



Reviewer Information

Editor Information