Welcome Guest! please  Login

ISSN 2457-9459 (Online)
ISSN-L 0576-9787 (Print)


2023

Journal Citation Reports
Impact factor 2023: 1.3
5-Year Impact Factor: 1.2
Article Influence® Score: 0.140
Ranked 9 out of 23
MATERIALS SCIENCE, PAPER & WOOD (Q2)

Scopus
CiteScore 2023: 2.3
SNIP: 0.405

SCImago
SJR: 0.264
H-Index: 42
Ranked Q3

 

Title
Extraction,characterization and kinetics of thermal decomposition of lignin from date seeds using modelfree and fitting approaches
Authors
NIDHOIM ASSOUMANI, MARYAM EL MAROUANI, LAHCEN EL HAMDAOUI, LӐSZLO TRIF, FATIMA KIFANI-SAHBAN and MERLIN SIMO-TAGNE

Received April 15, 2023
Published Volume 57 Issue 7-8 July-August
Keywords lignin extraction, DSC, TGA, model fitting methods, kinetics

Abstract
Lignin is known to have great potential for use as a renewable feedstock in a variety of industrial applications, including energy and chemicals. Furthermore, to ensure an efficient valorization of lignin, the efficiency of the isolation procedure and the knowledge of its properties are crucial. In the present study, we extracted lignin from date seeds using the Klason method. The extracted lignin was characterized by FT-IR spectrometry, XRD and SEM-EDX analysis. The thermal behavior of date seeds lignin has been investigated using TGA and DSC. Several isoconversional and model-fitting methods were employed to derive the kinetic parameters. A comparison between these procedures was carried out. Based on the results of activation energy (Ea) and pre-exponential factor (A) determined using Kissinger’s equation for date seeds lignin decomposition, some thermodynamic parameters (ΔS#, ΔH# and ΔG#) were determined. Following a broad endothermic stage, a large exothermic peak was observed in the DSC plots, attesting to the overall exothermicity of the lignin pyrolysis. From the derivative curve of DSC plots, the glass transition temperature Tg of the studied lignin was determined. High values of Tg, ranging from 102.62 to 127.28 °C, significantly affected by the heating rate, were found.


Link https://doi.org/10.35812/CelluloseChemTechnol.2023.57.69

- Full text available Download



Reviewer Information

Editor Information