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The transient behaviour of desorption phenomena of a solute through a packed bed of porous particles is characterized 

using the one dimensional axial dispersion model. Mass-transfer resistance due to pore diffusion/dispersion is 

considered in the model. The model is analyzed with respect to linear and nonlinear (Langmuir) adsorption isotherm, 

for same set of boundary and initial conditions. The model is solved numerically, using the cubic Hermite collocation 

method with Gauss Legendre quadrature points of order two, as collocation points. Linear and nonlinear cases are 

compared based on experimental data, from a paper mill, reported by previous investigators. The value of exit solute 

concentration for different parameters like Péclet number, axial dispersion coefficient, interstitial velocity and cake 

thickness is measured through the models. It is concluded that the nonlinear isotherm follows the actual desorption 

process more closely than the linear isotherm. 
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INTRODUCTION 

The removal of solutes from a packed bed 

using a solvent is of great importance. The solute 

occupying the space between the interstices of 

fibres (as displaceable fluid) and in the pores of 

the fibres (as stagnant fluid) is shown in Fig. 1. 

The displacement of the solute from the void 

spaces of the bed takes place due to diffusion-

dispersion in the direction of flow. Diffusion due 

to concentration gradient, dispersion due to back 

mixing and adsorption-desorption of solutes 

towards the fibre surface cause the stagnant fluid 

(containing solute) to move out of the particle 

voids. The solutes are subsequently displaced by 

the flowing fluid. This causes an asymptotic 

decline in the concentration of solute with time. 

To analyze, simulate and optimize the solute 

removal from a packed bed, the development of a 

mathematical model is an imperative necessity. 

Models proposed by earlier investigators can be 

classified into three categories, namely  macros- 

 

copic, microscopic and semi quantitative models. 

The macroscopic models can be categorized as 

black box type, because these models give outside 

description of the process based on material 

balances only.  

The microscopic models1-36 are concerned with 

the basic mechanism and are based on the 

fundamentals of fluid dynamics. Semi 

quantitative models are intermediate between 

these two models. 

The microscopic model of packed bed gives 

importance to three physical rates:  

1. axial dispersion of the bulk fluid (flowing 

liquor); 

2. intrafiber Fick’s second law of diffusion; 

3. liquid phase mass transfer, which 

accounts for the transport of the solute from the 

fiber surface to the flowing liquid. 

However, boundary conditions describing the 

solute exchange between the fiber surface and the 
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bulk fluid also play an important role. In the 

following section, a general model based on the 

equation of continuity, diffusion-dispersion and 

kinetics of adsorption-desorption is discussed for 

two different adsorption isotherms. 

 

 
 

Figure 1: Schematic representation of fibers 

 

DESCRIPTION OF THE PROBLEM 

For a systematic analysis of a packed bed of 

porous particles it is assumed that:  

1. the bed is macroscopically uniform; 

2. particles are of uniform cylindrical size; 

3. particle diameter is very small as 

compared to axial distance; 

4. the intrafiber diffusion coefficient is 

independent of cake thickness and particle 

radius; 

5. the consistency of fibers, particle porosity 

and bed porosity are interrelated to each 

other. 

The material balance across any simple shell, 

in one dimensional form, can be written as: 
2

2

1
L

c c c n
D u

z z t t

ε

ε

∂ ∂ ∂ − ∂
= + +

∂ ∂ ∂ ∂
.           (1) 

Here, the first term represents diffusion-

dispersion, the other terms represent convective 

flow, concentration gradient of fluid and 

concentration gradient of particles, respectively. 

Mathematically, u and DL are functions of z, while 

c and n are functions of both z and t.  

The concentration of the solute adsorbed on 

fibers is linked with the concentration of the 

solute in the flowing liquor via linear and 

Langmuir adsorption isotherms. The linear 

isotherm assumes that pointwise equilibrium is 

attained instantaneously inside the particle, i.e.,  

n kc=              (2a) 

The Langmuir isotherm assumes that the 

deposition (adsorption) rate is second order in 

forward direction and the detachment (desorption) 

rate is first order in backward direction, i.e., 

1 2( )
i

F

n c
k N n k n

t C

∂
= − −
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At equilibrium, it simplifies to:  

0

01

A c
n

B c
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+
 

where 
0

i

F

kN
A

C
=  and 

0

F

k
B

C
=            (2b) 

Initially, bulk fluid concentration is taken 

equal to inlet solute concentration, i.e.,  

iCzc =)0,(               (3) 

To keep the mathematical complexity as small 

as possible, the boundary conditions are defined 

at two points only. One at the top of the bed (z = 

0) and the other at the bottom of the bed (z = L). 

Between 0 and L, no condition is imposed.  

At the inlet of the bed (z = 0), there is a step 

change in the solute concentration. The difference 

of concentration gradient at the inlet 

concentration multiplied by the ratio of interstitial 

velocity to axial dispersion coefficient is equal to 

the concentration of weak wash liquor, i.e.,  

L S

c
uc D uC

z

∂
− =

∂
             (4) 

At the outlet of the bed (z = L), to avoid the 

unacceptable conclusions that the fluid will pass 

through the maximum or minimum in the interior 

of the bed, the concentration gradient is taken as 

zero, i.e.,  

0=
∂

∂

z

c
               (5) 

By making suitable modifications, the present 

models have been applied to study the mass 

transfer between solid and liquid phases,1 the 

separation of glycerol from biodiesel,2 tubular 

flow reactor,
3,4,5

 the analysis of the distillation 

column,6 the design and development of airlift 

loop reactors,7 heat transfer processes in gas-solid 

turbulent fluidized systems,
8
 chromatography,

9
 

measurement of neutron flux,10 sorption-
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desorption,
11,12

 enzymatic hydrolysis of racemic 

ibuprofen ester by lipase,13 annular flow in a 

tubular reactor,
14

 electrochemical reactors,
15

 gas 

liquid bubble column,
16

 solute flow in liquid 

suspension,17 cake washing process18 and mixing 

flow pattern.
19,20

  

A great deal of research is underway to find 

the exact and numerical solution of these models 

using Laplace transformation,
15,16,21,22,23

 Fourier’s 

method,
17,18,21

 moment method,
3
 Galerkin finite 

element method,24 finite difference method,7 

FlexPDE software by means of finite element,
19,20

 

Euler Maruyama scheme,
14

 orthogonal collocation 

method,10,25,26 fitted mesh collocation method,27 

Galerkin/Petrov method,
28

 orthogonal collocation 

on finite elements,
29,30

 COMSOL Multiphysics 

finite element package,2 iterative technique,4 

collocation method,5 and pdepe-solver.8  

None of the previous investigators have ever 

attempted to compare the results of the model for 

different isotherms, in order to assess their 

suitability to predict the actual flow pattern in the 

packed bed. In this work, an attempt is made to 

compare the linear and nonlinear isotherms using 

the cubic Hermite collocation method (CHCM) 

for Gauss Legendre roots as collocation points. 

The method has the advantage that high-order 

accuracy can be achieved using a small number of 

systems of equations and multistep time 

differencing. In addition, it involves less 

arithmetic at each time step.  

 

SOLUTION TECHNIQUE 

The technique of CHCM, selection of 

collocation points and differentiation of Hermite 

interpolation polynomials are explained 

hereunder. 

 

Cubic Hermite collocation method 

In this method, the interval [ , ]I a b=  is 

subdivided into a partition π  by the set of points 

1 2 1: ... na x x x bπ += < < < = . The approximating 

subspace 3( )H π
 
will consist of all the functions 

( )f x .  

Consider the trial function as proposed by 

Brill31 as follows: 
1

1

( , ) ( , ) ( ) ( , ) ( )
n

j j j j

j

c u t a u t P u a u t Q u
+

=

′ = + ∑       (6) 

where ( , ), ( , )j ja u t a u t′  are unknown 

coefficients to be determined. Details about the 

technique of CHCM are available in Ganaie et 

al.32 

Selection of collocation points 

The Gauss-Legendre quadrature points 

(Douglas and Dupont33) of order 2 are taken as 

the collocation points for each subinterval 

1[ , ],i ix x +  i.e.,  

( )1
, 1 , 2 1, 1 2

2 2 3

ri i i
i r

x x h
i n rη − + 

= + − ≤ ≤ + ≤ ≤ 
      

   (7)  

By taking 1 1
1

2 3
β

 
= − 

 

 and 1 1
1

2 3
γ

 
= + 

 

, these 

points can be written as: 

, 1 , 2 , 1 1 , 2 1
, , ,

j j j j j j j j

j j j j

x x x x

h h h h

η η η η
β γ β γ

− −− − − −
= − = − = =

 (8)  

 

SOLUTION OF MODEL 

Equations (1) to (5) are converted into the 

dimensionless form by using Péclet number, 

dimensionless concentration, dimensionless time 
and dimensionless thickness given below. More 

details are available elsewhere.23 
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The dimensionless form of the model along with 

initial and boundary conditions is given hereunder: 
2

2

1 C C C

Pe ξ ξ τ

∂ ∂ ∂
= +

∂ ∂ ∂
 (linear case)           (9a) 

( ){ }

2
0

2 2

0 0

1 1 1

(1 ) (1 )1 s s

AC C C C

Pe k kB C C C C

µ

ξ µ τ µ τξ

∂ ∂ ∂ ∂
= + +

∂ + ∂ + ∂∂  + − + 

 (nonlinear case)                        (9b) 

( ,0) 1C ξ =                                                        (10) 

(0, )
(0, ) 0

C
PeC

τ
τ

ξ

∂
− =

∂
                                  (11)       

(1, )
0

C τ

ξ

∂
=

∂
                                                  (12) 

The discretized form of the linear case can be 
written as follows: 

1

1

( , ) ( ) ( , ) ( )
n

j j j j

j

a P a Qξ τ ξ ξ τ ξ
+

=

 ′+ ∑ & &
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1 1

1 1

1
( , ) ( ) ( , ) ( ) ( , ) ( ) ( , ) ( )

n n

j j j j j j j j

j j

a P a Q a P a Q
Pe

ξ τ ξ ξ τ ξ ξ τ ξ ξ τ ξ
+ +

= =

   ′′ ′′ ′ ′′ ′= + − +
   ∑ ∑& &  

 

After rearrangement, one gets: 

1 1 1 1 1 1 1 1

2

( , ) ( ) ( , ) ( ) ( , ) ( ) ( , ) ( ) ( , ) ( ) ( , ) ( )
n

j j j j n n n n

j

a P a Q a P a Q a P a Qξ τ ξ ξ τ ξ ξ τ ξ ξ τ ξ ξ τ ξ ξ τ ξ+ + + +
=

 ′ ′ ′+ + + + + ∑ & & & & & &  

1

1

( , ) ( ) ( , ) ( )
n

j j j j

j

a aξ τ φ ξ ξ τ ψ ξ
+

=

 ′= + ∑                    (13) 

where 
1

( ) ( ) ( )j j jP P
Pe

φ ξ ξ ξ′′ ′= −  and 
1

( ) ( ) ( )j j jQ Q
Pe

ψ ξ ξ ξ′′ ′= − . 

Since 1 1 1( ) 0, ( ) 1jP Qξ ξ′≡ =
 
and 1( ) 0jQ ξ′ ≡ for 1j > , boundary condition at 0ξ = , gives: 

1 1

1
( , ) ( , ) 0a a

Pe
ξ τ ξ τ′− =                                                                                  (14) 

Differentiating this expression with time, one gets: 

1 1

1
( , ) ( , ) 0a a

Pe
ξ τ ξ τ′− =& &                                                                                 (15) 

Similarly, the boundary condition at 1ξ =  implies: 

1( , ) 0na ξ τ+′ =                                                                                   (16) 

Differentiating this expression with time, one gets: 

1( , ) 0na ξ τ+′ =&
     

                                                                             (17) 

Now substituting conditions (14) to (17) in (13), one gets: 

[ ]

[ ]

1 1 1 1 1

2

1 1 1 1 1

2

( , ) ( ) ( , ) ( ) ( ) ( ) ( , ) ( , ) ( )

( , ) ( ) ( , ) ( ) ( ) ( ) ( , ) ( , ) ( )

n

j j j j n n

j

n

j j j j n n

j

a P a Q PeQ P a a P

a a a a

ξ τ ξ ξ τ ξ ξ ξ ξ τ ξ τ ξ

ξ τ φ ξ ξ τ ψ ξ φ ξ ψ ξ ξ τ ξ τ φ ξ

+ +
=

+ +
=

 ′+ + + + 

 ′= + + + + 

∑

∑

& & & &

         

          (18) 

 

Evaluating Eq. (18) at collocation points ,i rη , for 2, 3, ..., 1i n= +  and 1,2r = . It can be put in the matrix 

form as follows: 

AX BX=&
                                                                                 (19) 

where ( )1 2 2 3 3 1( , ), ( , ), ( , ), ( , ), ( , ),..., ( , ), ( , ), ( , )
T

n n nX a a a a a a a aξ τ ξ τ ξ τ ξ τ ξ τ ξ τ ξ τ ξ τ+′ ′ ′=
 
and 

( )1 2 2 3 3 1( , ), ( , ), ( , ), ( , ), ( , ), ..., ( , ), ( , ), ( , )
T

n n nX a a a a a a a aξ τ ξ τ ξ τ ξ τ ξ τ ξ τ ξ τ ξ τ+′ ′ ′=& & & & & & & & &
 

are dimensional 

vectors. 

 

The matrix system (19) is solved by MATLAB ode15s solver. Here 2n + 2 conditions are required at 

each time to specify the approximate solution. Obviously, two of these conditions are obtained from the 

boundary conditions and the rest from the differential equation. 

 Matrices A and B are given as:  
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1 2, 1 1 2, 1 2 2, 1 2 2, 1

1 2, 2 1 2, 2 2 2, 2 2 2, 2

2 3, 1 2 3, 1 3 3, 1 3 3, 1

2 3, 2 2 3, 2 3 3, 2 3 3, 2

( ) ( ) ( ) ( ) 0 0 ... 0

( ) ( ) ( ) ( ) 0 0 ... 0

0 ( ) ( ) ( ) ( ) ... 0

0 ( ) ( ) ( ) ( ) ... 0

... ... ... ... ... ... ...

... ... ... ... ... ... ...

P PeQ P Q

P PeQ P Q

P Q P Q

P Q P Q

A

η η η η

η η η η

η η η η

η η η η

+

+

=

1, 1 1, 1 1 1, 1

1, 2 1, 2 1 1, 2

... ... ... ... ... ... ...

0 0 ... 0 ( ) ( ) ( )

0 0 ... 0 ( ) ( ) ( )

n n n n n n

n n n n n n

P Q P

P Q P

η η η

η η η
+ + + +

+ + + +

 
 
 
 
 
 
 
 
 
 
 
 
 
   

 
and 

 

1 2, 1 1 2, 1 2 2, 1 2 2, 1

1 2, 2 1 2, 1 2 2, 2 2 2, 2

2 3, 1 2 3, 1 3 3, 1 3 3, 1

2 3, 2 2 3, 2 3 3, 2 3 3, 2

( ) ( ) ( ) ( ) 0 0 ... 0

( ) ( ) ( ) ( ) 0 0 ... 0

0 ( ) ( ) ( ) ( ) ... 0

0 ( ) ( ) ( ) ( ) ... 0

... ... ... ... ... ... ...

... ... ... ... ... ... ...

... .

B

φ η ψ η φ η ψ η

φ η ψ η φ η ψ η

φ η ψ η φ η ψ η

φ η ψ η φ η ψ η

+

+

=

1, 1 1, 1 1 1, 1

1, 2 1, 2 1 1, 2

.

.. ... ... ... ... ...

0 0 ... 0 ( ) ( ) ( )

0 0 ... 0 ( ) ( ) ( )

n n n n n n

n n n n n n

φ η ψ η φ η

φ η ψ η φ η
+ + + +

+ + + +

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

RESULTS AND DISCUSSION 

Comparison for linear case 

The analytic solution for a packed bed of finite length is derived by Brenner
34

 using Laplace transform. 
The exact solution for exit solute concentration reported by Brenner34 is given hereunder: 

For small values of Pe: 

2

2
1 2

sin(2 ) 4
exp (2 ) exp

4

4 4

k k k

e

k

k

TPe
C T

PePe Pe

λ λ λ

λ

∞

=

 
 

    = − −           
+ +    
    

∑      (20a) 

For large values of Pe: 
2

2

2

1 (1 )
1 (1 ) 3 (1 ) exp

2 4 2 4

1
(3 4 ) (1 ) exp( ) (1 )

2 2 4 4

e

Pe Pe Pe T PeT
C erfc T T

T T

Pe Pe Pe
T T Pe erfc T

T

π

    −   
= − − − + + −      

       

     
+ + + + + +    

       

    (20b) 

 
Numerical results for the linear case from Eq. 

(9a), obtained using the cubic Hermite collocation 

method, are compared with the exact ones, in 

Tables 1, 2 and 3 for Péclet numbers 10, 40 and 

80, respectively. The numerical computation is 

performed using shifted Gauss Legendre roots of 

order 2. A close match is found between the 

results for small values of N, but the results 

become accurate to a greater number of decimal 

places as N increases. Here N stands for the 
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number of elements introduced within the interval 

0 to 1. 

For Péclet numbers 10, 40 and 80, the exact 

and numerical results of exit solute concentration 

for linear and nonlinear isotherms are compared 

in Figs. 2 to 4. The exact and linear isotherm 

results are overlapping each other. For these 

cases, the solute removal process starts later than 

the nonlinear isotherm. It is found that the exit 

solute concentration for the linear case is of the 

order 10
-20

 (almost negligible), whereas for the 

nonlinear case it is of the order 10-4. This 

indicates that a very small amount of leaching 

continues for some time. 
 

Table 1 

Comparison at Pe = 10 for linear case 

 

Numerical solution using CHCM Time  

 

Exact 

solution
34

 N = 25 N = 50 N = 100 

0.0 1.00000E+00 1.00000E+00 1.00000E+00 1.00000E+00  

0.2 1.00000E+00 1.00000E+00 1.00000E+00 1.00000E+00  

0.4 9.99987E-01 1.00000E+00 9.99987E-01 9.99987E-01  

0.6 9.87554E-01 9.87600E-01 9.87600E-01 9.87557E-01  

0.8 8.18514E-01 8.18500E-01 8.18520E-01 8.18519E-01  

1.0 4.57337E-01 4.56500E-01 4.56525E-01 4.56991E-01  

1.2 1.73343E-01 1.73300E-01 1.73303E-01 1.73340E-01  

1.4 4.95553E-02 4.95600E-02 4.95587E-02 4.95585E-02  

1.6 1.16114E-02 1.16200E-02 1.16240E-02 1.16230E-02  

1.8 2.37146E-03 2.37200E-03 2.37201E-03 2.37198E-03  

2.0 4.38032E-04 4.38200E-04 4.38128E-04 4.38123E-04  

2.2 7.52085E-05 7.51900E-05 7.52171E-05 7.52166E-05  

2.4 1.22255E-05 1.22200E-05 1.22243E-05 1.22244E-05  

2.6 1.90602E-06 1.90500E-06 1.90524E-06 1.90529E-06  

2.8 2.87684E-07 2.87400E-07 2.87446E-07 2.87460E-07  

3.0 4.23275E-08 4.22600E-08 4.22706E-08 4.22736E-08  

 

Table 2 

Comparison at Pe = 40 for linear case 

 

Numerical solution using CHCM Time  

 

Exact 

solution 
34

 N = 40 N = 80 N = 160 

0.0 1.00000E+00 1.00000E+00 1.00000E+00 1.00000E+00 

0.2 1.00000E+00 1.00000E+00 1.00000E+00 1.00000E+00 

0.4 1.00000E+00 1.00000E+00 1.00000E+00 1.00000E+00 

0.6 1.00000E+00 9.99998E-01 9.99998E-01 1.00000E+00 

0.8 9.74640E-01 9.74616E-01 9.74640E-01 9.74640E-01 

1.0 4.77840E-01 4.77902E-01 4.77843E-01 4.77840E-01 

1.2 4.49280E-02 4.49056E-02 4.49265E-02 4.49278E-02 

1.4 9.90370E-04 9.89062E-04 9.90306E-04 9.90364E-04 

1.6 7.90010E-06 7.93846E-06 7.90259E-06 7.90028E-06 

1.8 3.11080E-08 3.19352E-08 3.11537E-08 3.11106E-08 

2.0 7.40610E-11 7.93789E-11 7.43584E-11 7.40884E-11 

 

Table 3 

Comparison at Pe = 80 for linear case 

 

Numerical solution using CHCM Time 

 

Exact 

solution 
34

 N = 100 N = 200 N = 400 

0.0 1.00000E+00 1.00000E+00 1.00000E+00 1.00000E+00 

0.2 1.00000E+00 1.00000E+00 1.00000E+00 1.00000E+00 

0.4 1.00000E+00 1.00000E+00 1.00000E+00 1.00000E+00 

0.6 1.00000E+00 1.00000E+00 1.00000E+00 1.00000E+00 

0.8 9.97410E-01 9.97410E-01 9.97411E-01 9.97411E-01 
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1.0 4.84280E-01 4.84289E-01 4.84280E-01 4.84280E-01 

1.2 9.28220E-03 9.28058E-03 9.28206E-03 9.28215E-03 

1.4 7.61530E-06 7.62324E-06 7.61583E-06 7.61535E-06 

1.6 7.11770E-10 7.18406E-10 7.12188E-10 7.11804E-10 

1.8 1.50320E-14 1.86514E-14 1.61947E-14 1.60089E-14 

2.0    -7.71670E-20 -8.07200E-18 -1.03347E-16 -1.46734E-16 
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Figure 2: Comparison of linear and nonlinear cases for Pe =10 
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Figure 3: Comparison of linear and nonlinear cases for 

Pe = 40 

Figure 4: Comparison of linear and nonlinear cases for 

Pe = 80 

 

Linear vs nonlinear case 

The model for the packed bed of porous 
particles is simulated using the experimental data 

of a rotary vacuum washer.35 The mill was using 

wheat straw as raw material. The inlet and outlet 

consistencies were in the range of 1-2% and 10-

12%, respectively. The concentration of the black 

liquor solids inside the vat was 8-9 kg/m
3
 and 

fresh water was sprayed to wash the pulp.  
Using the experimental data listed in Table 4, 

the exit solute concentration profiles for the linear 

and nonlinear isotherms are plotted for axial 
dispersion coefficient, cake thickness and 

interstitial velocity in Figs. 5 to 7, respectively. 

During the actual washing process in a plant, the 
displacement of black liquor solids from the 

packed bed starts instantaneously, as soon as the 

wash liquor comes in contact with the bed. These 

figures indicate that, for the same set of 

parameters, mathematically, such type of 

behaviour is better described by the nonlinear 

isotherm than by the linear one. A similar 
behaviour has been observed practically, during 

laboratory experiments by Crotogino et al.,
36

 i.e. 

the leaching of solute continues even after 72 
hours. The present study verifies the experimental 
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results of Crotogino et al.
36

 for the nonlinear 

isotherm. It can be concluded that the solute 

removal process can be simulated more accurately 

using the nonlinear isotherm.  
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Figure 5: Comparison of linear and nonlinear case at DL = 5 × 10
-5

 m
2
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Figure 6: Comparison of linear and nonlinear case  

at L = 0.05 m 

 

Figure 7: Comparison of linear and nonlinear case  

at u = 0.019 m/s 

 

 

 

Table 4 

Results from the experimental study 

 

Parameter Range Unit 

C0 (8.3341-8.3782) × 10
0
 kg/ m

3
 

CF (4.7059-6.6176) × 101 kg/ m3 

u (1.9321-1.9584) × 10
-3

 m/s 

L (0.6960-1.0531) ×× 10
-1

 m 

k1/k2 (2.9389-4.1104) × 10
-3

 - 

ε  (9.5500-9.6800) × 10-1 - 

DL/u 3.99 × 10-3 m 

 

 

Table 5 



Fibers 

725 

 

Exit concentration values for nonlinear case 

 

Time N = 50 N = 100 N = 200 N = 300 

0.0 1.00000E+00 1.00000E+00 1.00000E+00 1.00000E+00 

0.2 1.00000E+00 1.00000E+00 1.00000E+00 1.00000E+00 

0.4 9.99980E-01 9.99980E-01 9.99990E-01 9.99990E-01 

0.6 9.85000E-01 9.86290E-01 9.86930E-01 9.87140E-01 

0.8 8.03380E-01 8.10980E-01 8.14760E-01 8.16020E-01 

1.0 4.38510E-01 4.47520E-01 4.52040E-01 4.53540E-01 

1.2 1.63630E-01 1.68480E-01 1.70920E-01 1.71730E-01 

1.4 4.62050E-02 4.78800E-02 4.87230E-02 4.90040E-02 

1.6 1.07430E-02 1.11820E-02 1.14040E-02 1.14780E-02 

1.8 2.17880E-03 2.27520E-03 2.32390E-03 2.34010E-03 

2.0 4.00620E-04 4.19350E-04 4.28790E-04 4.31950E-04 

 

Table 5 contains numerical results for the 

nonlinear isotherm, for the data (Arora et al.
35

) for 

40Pe = , 0 5.20 4A E= −  1/s, 0 6.25 5B E= −  

m
3
/kg-s, 3.31 2Eµ = − , 

0 8.33C =  kg/m
3
, 

2.94 3k E= − . Since no exact solution is available 

in the literature for the nonlinear isotherm, in 
Table 5 it is shown that the numerical results 

remain consistent and stable, even by increasing 

the number of elements.    

 

CONCLUSION 

A diffusion-dispersion model is solved for two 

isotherms, using the cubic Hermite collocation 

method. The technique is found to be simple, 

elegant and stable even for a large number of 

collocation points. The leaching of the solute 

from the fibers into the bulk liquor accompanies 

the displacement and the sorption phenomena 
continue for some time. Simulations are carried 

out using industrial data and it is found that for a 

more realistic investigation, the nonlinear 
isotherm should be preferred over the linear one. 

 

NOMENCLATURE  
A0 :Langmuir constant (1/s) 

B0 :Langmuir constant (m3/kg s) 

c : Concentration of the solute in the liquor 

(kg/m3) 

Ci : Concentration of the solute in the vat 

(kg/m
3
) 

CS  : Concentration of the solute in the wash 
liquor (kg/m3) 

CF : Fiber consistency (kg/m
3
) 

DL : Longitudinal dispersion coefficient (m
2
/s) 

K : Mass transfer coefficient (dimensionless) 

k1, k2
 
: Mass transfer coefficients (1/s) 

L  : Cake thickness (m) 

n   : Concentration of solute on the fibers 

(kg/m
3
) 

Ni : Initial concentration of solute on the fibers 

(kg/m3) 

t : Time (s) 
u : Velocity of liquor in the mat (m/s) 

z : Variable cake thickness (m) 

 

Greek symbols: 

ε   : Total average porosity (dimensionless) 

µ  : Ratio of porosities (dimensionless) 

ξ : Dimensionless distance (dimensionless) 

τ : Dimensionless time (dimensionless) 
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