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This paper presents an application of multivariate analysis for classing virgin and non-virgin tissue paper products. The 
brightness, fluorescent whiteness, fiber fibrillation and effective residual ink concentration of commercial tissue paper 
products were measured according to ISO standard methods. Based on these parameters, the multivariate analysis 
techniques, i.e., principal component analysis (PCA) performed on the preliminary study of the data set structure, soft 
independent modeling of class analogy (SIMCA), and partial least square discriminant analysis (PLS-DA), were used 
to develop classification models. The results showed that the PLS-DA model provided better classification in the 
applications.  
The present method is simple and accurate. It is suitable for use in quality control testing of tissue papers during the 
manufacturing, as well as in the analysis of point-of-sale samples from commercial markets. 
 
Keywords: tissue paper, virgin fiber, recycled fiber, multivariate analysis 

 
INTRODUCTION  

Hygienic tissue paper refers to a class of soft, 
absorbent, disposable papers and is commonly used 
for facial tissue (paper handkerchiefs), napkins, 
bathroom tissue and household towels. This kind of 
tissue products can be made from 100% chemical 
pulp (virgin fiber) to 100% recycled fiber or a 
combination of the two. Typically, a chemical pulp 
with longer fiber length is introduced to improve 
the product strength. Although the utilization of 
recycled fiber can significantly reduce the use of 
raw material and energy in tissue paper production,1 
some toxic substances, such as mineral oils and 
heavy metals, remain in the recycled fibers and 
could contaminate the new products.2-4 Another 
common practice amongst the paper mills is the 
addition of a fluorescent whitening agent (also toxic) 
in order to offset the effect of residual ink in 
recycled fiber on the paper brightness.5,6 Therefore, 
the use of recycled fiber in the production of 
hygienic  tissue  paper  poses a risk for users to  

 
potentially come in contact with these harmful 
substances. Both EU and US have established 
regulations around the limit of these harmful 
substances, such as organochlorine, formaldehyde, 
dyes, inks, and heavy metals.7,8 The procedures 
involved in these tests are very complicated and 
time consuming. As a result, there is still a risk to 
use the recycled fiber added products because of 
the presence of many unidentified harmful 
substances. Therefore, some countries and districts9 
have resorted to establishing regulations that forbid 
the use of recycled fiber in the production of the 
tissue papers that are used for personal cleaning and 
hygienic purpose, typically facial tissue. In order to 
validate whether point-of-sales samples are 
following regulations, an effective method to 
identify the presence of recycled fiber used in these 
tissue products is needed. 

Considering the features of recycled fiber,1,10 
there are several parameters, such as fibrillation, 
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ink content, brightness, fluorescent strength and 
others, that are widely used for checking if the 
products are made from recycled fibers. However, 
in many cases the portion of recycled fiber blended 
into the products is very small and as a result makes 
detection very difficult. There are also some minor 
contaminations because the labeled ink or 
fluorescent substances when using commercial pulp 
board or the process are different for different 
products. Therefore, based on the single parameter 
mentioned above, it is difficult to judge if the 
products are truly virgin fiber made or not. 
Moreover, it is also hard to develop a mathematical 
equation that can provide a quantitative relationship 
between the product types (i.e., made from virgin 
fiber or recycled fiber blend) and these tested 
parameters. 

Compared with the traditional approaches, 
multivariate analysis (also called chemometrics) 
methods11 have been found to be very useful for the 
classification analysis in many areas.12-14 
Multivariate analysis allows valuable information 
to be extracted from multivariate data arrays, which 
are difficult to handle using classical univariate 
statistical methods. They were successfully used in 
many complex case studies, such as in food 
classification, environmental monitoring and 
papermaking process,15-17 in which there were 
multiple parameters whose interpretation is far 
from simple. Multivariate analysis methods provide 
tools for finding relationships between groups of 
analyzed samples and/or related variables or 
parameters.18,19 Therefore, multivariate analysis 
should be capable to be used for the classification 
of virgin and virgin-recycled fiber blend hygienic 
tissue paper products.   

The aim of the present study was to a develop 
multivariate analysis method for the classification 
of virgin and virgin-recycled fiber blend tissue 
paper products, based on the traditional parameters 
in the paper testing, including fluorescent strength, 
brightness, residual ink content, and so on. 
Multivariate analysis techniques were attempted in 
the classification investigation. 

 
EXPERIMENTAL 
Samples and the parameters tested 

56 samples of tissue papers and relevant base papers 
and pulps from nine manufacturers (A to I) were 
obtained from different production sections and 11 
samples were prepared in our laboratory according to a 
known recipe. The samples were divided into two groups 

(i.e., virgin fiber only and virgin-recycled fiber blend) 
and detailed information on the samples is provided in 
Table 1. The related parameters, i.e., fluorescence 
intensity, brightness, fluorescent whiteness, effective 
residual ink concentration (ERIC), and fiber fibrillation 
of the samples, were tested using standard methods.20-23 
The testing apparatus included a UV analyzer (ZF-1, 
SHANGHAI GUCUN OPTIC INSTRUMENT 
FACTORY, Shanghai, China), a Digital Whiteness meter 
(SE071, Lorentzen & Wettre, Shanghai, China) and a 
Fiber analyzer (XWY-V1, Huazhi Technology Co. Ltd., 
Zhuhai, China). 
 
Methods in multivariate analysis 
Principal components analysis (PCA) 

In multivariate analysis, PCA (unsupervised pattern 
recognition) is often the first step of exploratory data 
analysis to detect groups in the measured data. PCA is 
also a very effective data reduction technique that can 
provide low-dimensional representations (using 
extracted orthogonal PCs) of complex datasets through a 
visually interpretable score plot and a loading plot.24 The 
scores are the projections of the original data onto the 
new vector space, defined by PCs. The score plot shows 
that the observations cluster in different groups. 
Loadings are the weights to quantify how much of each 
of the original variables are used to define each PC, and 
with which original variables to form the scores. The 
loading plot is also able to show the correlation structure 
between the variables.  
 
Soft independent modeling of class analogy (SIMCA)  

SIMCA (supervised pattern recognition) is a 
commonly used class-modeling technique based on 
disjoint PCA modeling realized for each class in the 
calibration set. For unknown samples, they are compared 
to the class models and assigned to classes according to 
their analogy with the calibration samples.  

In SIMCA, the model distance critical limit (D-Crit) 
is used for classing new samples and D-Crit is calculated 
using an inverse cumulative F-distribution function.25 
The normalized distances to model (DMod (Norm)) for 
samples in the calibration set (workset) or in the 
prediction set26,27 are respectively calculated by the 
following equations, i.e., 
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where K = number of X variables; A = number of 
components in the model or the selected number of 
components; eik = X-residuals of sample i; v is a 
correction factor (function of the number of observations 
and the number of components) and is slightly larger 
than one; A0 = 1 if model is centered, 0 otherwise; N = 
number of samples in the workset. The difference in the 
formula is obvious, in comparison with the calculation of 
DModX, the correction factor is not present in the 
calculation of DModXPS. 

If the sample distance to the model was larger than 
the critical limit (D-Crit), this sample didn’t belong to 
the corresponding class. The smaller the distance of the 
sample to the model, the higher the probability that the 
sample belonged to the corresponding class. 
 
Partial least square discriminant analysis (PLS-DA) 

PLS-DA, supervised pattern recognition, is a 
classification method based on partial least squares 
regression (PLS-R).28,29 The objective of PLS-DA is to 
find models that allow the maximum separation among 
classes of samples. A dummy variable can be constructed, 
representing the sample properties (e.g., virgin fiber 
group = 1, virgin-recycled fiber blend group = 0), and 
then used as Y-variable. The prediction from a PLS-DA 
model is a value of nominally zero or one, not exactly 
equals to 0 or 1 but close to 0 or 1, which is justified by 
the natural variability of the sample constituents. A value 
close to 1 or 0 indicates that the new sample is in the 
modeled class or not. In practice, a threshold is 
determined, above or below which the sample is 
considered to be in the class or not.  
 
Assessment of the methods 

The percentage of correct classification (%CC) is the 
criterion used to compare classification results obtained 
by the multivariate analysis methods: 
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        (3) 

where
cN and

icN represent the numbers of correct 

classifications and incorrect classifications, 

respectively.30 
 
Software 

Principal component analysis (PCA), soft 
independent modeling of class analogy classification 
(SIMCA) and partial least square discriminant analysis 
(PLS-DA) were performed using commercial 

chemometrics software, i.e., SIMCA-P (UMETRICS AB, 
Sweden). 
 
RESULTS AND DISCUSSION 
Classification of virgin fiber and virgin-recycled 
fiber blend samples by a single parameter 
(variable) 
Fluorescence intensity  

Although it can only provide qualitative 
information, the fluorescence intensity test is a 
traditional way used for judging if the products use 
recycled fiber or not.31 For the products with 
addition of recycled fiber, the fluorescence intensity 
test must be positive. Fig. 1 shows the results from 
the fluorescence intensity test for the samples. It is 
noticed that 7 samples from the virgin fiber group 
(among 39 samples), i.e., about 18% of the samples, 
are positive in the fluorescence intensity test. 
Therefore, fluorescence intensity cannot be used as 
a single parameter in the classification.  
 
Brightness 

For pulp and paper, brightness is a parameter 
that reflects the removal degree of chromophore 
species (e.g., residual lignin) from pulps in the 
bleaching process. However, from the application 
point of view, it is not necessary for tissue products 
to use pulp with high brightness. For recycled fibers, 
brightness is also a good indicator to judge the 
effectiveness of the deinking process. As can be 
noted from Fig. 2, the brightness of the tested 
samples was quite close regardless of whether they 
were made of virgin fiber or virgin-recycled fiber 
blend. Therefore, it can be concluded that 
brightness is not a reasonable parameter for 
classifying the products either.  
 
Residual ink concentration 

In theory, residual ink can be only found in the 
samples containing recycled fiber, due to the 
incompletion of the deinking process. However, 
from Fig. 3 it can be observed that amounts of 
residual ink (as ERIC) were detected even in the 
samples made wholly from virgin fibers, although 
the average value of ERIC in the virgin-recycled 
fiber blend group was higher than that of the virgin 
fiber group. We believe that this is explained by 
contamination during the manufacturing process, 
e.g., because of the labeling (contains ink and/or 
fluorescent substances) in the pulp board purchased 
from external sources, possibly from the ink 
remaining in the reused white water. If the samples 
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are blended with a small amount of recycled fiber 
or if the deinking process is very effective, the 
values of ERIC in the samples (e.g., samples 14-17) 
are basically the same as those for the virgin fibers. 
Thus, there is a risk to use ERIC for the 
classification. 
 
Fiber fibrillation  

Fibrillation is a parameter that reflects the 
degree of fiber damage, which is more significant 
in the recycled fibers.1 As seen in Fig. 4, the 
samples made from virgin-recycled fiber blends 
have higher fibrillation values, however, the 
fibrillation values vary a lot among the virgin fiber 
samples. Moreover, for a number of virgin fiber 
samples, the fibrillation values are close to those of 
the virgin-recycled fiber blend samples, although 
the average value of fiber fibrillation in the 
virgin-recycled fiber blend samples is higher than 
that of the virgin fiber only ones. Therefore, 
fibrillation cannot be used as a distinguishing 

feature between the groups.  
 

Fluorescent whiteness 
As mentioned above, a fluorescent whitening 

agent is widely used in the paper mills using 
recycled fibers, since it is an economic way to 
compensate the brightness loss due to the residual 
ink in recycled fiber. As seen in Fig. 5, the values of 
fluorescent whiteness of the samples made from 
virgin-recycled fiber blend materials are much 
higher than those of the virgin fiber samples. 
However, there are exceptions in both groups, e.g., 
samples 31, 46, 63, and 65 in the virgin fiber group. 
Such exceptions in the samples made from virgin 
fiber are potentially the result of contamination in 
the manufacturing process, as mentioned above. 
Therefore, although fluorescent whiteness is a 
distinct parameter for the fiber group judgment, 
much better than ERIC and fiber fibrillation, it 
cannot perform the classification task on its own. 

 

  
 

Figure 1: Fluorescence intensity of the samples Figure 2: Brightness of the samples 

  
Figure 3: Effective residual ink concentration (ERIC) 

of the samples 
 

Figure 4: Fibrillation of the samples 
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Figure 5: Fluorescent whiteness of the samples 

 
(a) 

 
(b) 

Figure 6: Score scatter plot (a) and loading plot (b) of the samples 
 

In summary, none of the above test parameters 
can be used alone for distinguishing between the 
samples made from virgin fiber only and 
virgin-recycled fiber blends. 

 
Multivariate analysis 

As mentioned above, multivariate analysis is a 
capable tool to solve this problem in a complex 
system. In this study, we applied several 
multivariate analysis methods, i.e., PCA, SIMCA 
and PLS-DA, respectively, to perform the 
classification analysis for the tissue product 
samples listed in Table 1.  
 
PCA 

PCA is the first step in either SIMCA or 
PLS-DA in order to evaluate whether clustering 
exists in a dataset without using class membership 
information in calculation. Fig. 6 shows the score 
plot projection of the PCA performed on the 
parameters of the samples listed in Table 1. The 

significance of the extracted principal components 
(PC) was inferred by the explained sum of squares, 
in which PC1 and PC2 together explained 70.4% of 
the variance in the data. From Fig. 6, it is clear that 
the score vectors of the samples shown in Table 1 
were basically distinguished into the 
virgin-recycled fiber blend and virgin fiber classes, 
which is also a prerequisite for a possible 
classification discriminant analysis. 

PCA also provides values of the so-called 
loading vectors, showing how the variables were 
combined to form the scores. Loading vectors 
indicates which of the variables were important and 
correlative, and corresponded to the directions in 
the score plot. Fig. 6b shows the loading plot 
corresponding to the score plot (Fig. 6a) and it 
indicates that the variables, i.e., fluorescent 
whiteness, fluorescence intensity and fiber 
fibrillation, were the ones loading heavily (i.e., 
have a larger absolute value) in the first PC (shown 
in the horizontal direction), while the brightness 
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and ERIC, respectively far to the top and bottom, 
were the ones loading heavily in the second PC 
(shown in the vertical direction). Hence, it could be 
concluded that the clustering of samples was 
mainly reflected in the fluorescent whiteness, 

fluorescence intensity and fiber fibrillation 
variables. These three variables are closer to each 
other, indicating that there is a better correlation 
between them. 

 
Table 1 

Sample source and description 
 

Sample No.  Description Sample No. Description 
Virgin-recycled fiber blend 34 B-short fiber 
1 A-before flotation 35 B-bagasse pulp 
2 A-after flotation 36 B-base paper 
3 A-base paper 37 C-bamboo pulp 
4 A-roll paper 38 C-wood pulp 
5 E-pulp 39 C-pulp board 
6 E-base paper 40 C-base paper 
7 G-not deinking 41 D-long fiber 
8 G-after deinking 42 D-bamboo pulp 
9 G-before defibrillation 43 D-Nourishing Sweet 
10 G-after defibrillation 44 D-short fiber 
11 G-after defibrillation+chemicals 45 D-wet bagasse 
12 G-manufacture forbay 46 D-base paper 
13 G-base paper 47 F-bamboo pulp 
14 L-ratio 5% 48 F-Guitang Eucalyptus 
15 L-ratio 10% 49 F-eucalyptus (two middle) 
16 L-ratio 20% 50 F-eucalyptus (Brazil) 
17 L-ratio 30% 51 F-Yingxing long fiber 
18 L-ratio 40% 52 F-before defibrillation 
19 L-ratio 50% 53 F-after defibrillation 
20 L-ratio 60% 54 F-after defibrillation+additives 
21 L-ratio 70% 55 F-base paper 
22 L-ratio 80% 56 H-pulp board 
23 L-ratio 90% 57 H-base paper 
24 X2-roll paper 58 I-pulp board 
25 X3-coiling towel 59 I-base paper 
26 X8-towel 60 X1-roll paper 
Virgin fiber 61 X4-roll paper 
27 A-Jingfeng-long fiber 62 X5-roll paper 
28 A-Dingfeng-short fiber 63 X6-roll paper 
29 A-Yingwu-short fiber 64 X7-roll paper 
30 A-base paper 65 X9-roll paper 
31 A-roll paper 66 X10-roll paper 
32 B-long fiber 67 X11-roll paper 
33 B-mid fiber   

 
 

 
Table 2 

Results for SIMCA classification 
 

Calibration set Prediction set 
Sample 

Number %CC Number %CC 
Virgin-recycled fiber blend 23 91.3 3 67 
Virgin fiber 33 93.9 8 75 
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Figure 7: Cooman’s plot of the samples Figure 8: Predicted class scatter plot 

 
SIMCA 

Due to the promising results of unsupervised 
PCA shown above, the SIMCA classification (PCA 
supervised) was applied to the calibration dataset. 
Both the virgin-recycled fiber blend and the virgin 
fiber sample classes were respectively modeled 
using the PCA for all variables, and the critical 
distances (DCrit-1 and DCrit-2) corresponding to 
the two class models were calculated by an inverse 
cumulative F-distribution function. For each object 
in the calibration and prediction set, the distance to 
the two class models (DMod-1, DMod-2) was 
computed and plotted with the critical distance 
DCrit-1 and DCrit-2 to form Cooman’s plot.25 Fig. 
7 is Cooman’s plot (showing class separation) of 
the SIMCA model with the calibration sample set 
and the prediction sample set. There are four zones 
(i.e., I, II, III and V) divided by lines 1 and 2. The 
samples located in zones II and V belong to the 
virgin-recycled fiber blend class and the virgin fiber 
class, respectively. If the sample is located in zone I 
or zone III, it can not be classified. It can be seen 
from Fig. 7 that there are three samples in the 
prediction set that cannot be judged. Table 2 lists 
the results from SIMCA classification, which 
shows that the percentages of correct classification 
(%CC) for the predicted samples are below 75%, 
although they are higher than 90% for the 
calibration samples. Therefore, SIMCA is not 

suitable for the classification of the given tissue 
samples. 
 
PLS-DA 
Primary analysis 

Compared with SIMCA, PLS-DA could provide 
a more accurate and reliable classification due to 
the partial least squares based regression. Fig. 8 
shows the results obtained by PLS-DA, which 
include sample prediction from both the calibration 
set and the prediction set, based on the information 
listed in Table 1. The predicted Y values close to 
zero (between -0.5 and 0.5) indicate that the 
samples belong to the virgin-recycled fiber blend 
class, while the predicted Y values close to one 
(between 0.5 and 1.5) point that the samples belong 
to the virgin fiber class. If the predicted Y value is 
not located in the zone between -0.5 to 1.5, the 
sample cannot be identified. From Fig. 8, we found 
that although there are two samples located on the 
border line in the predicted set, the classification 
using PLS-DA is more accurate than that by 
SIMCA. 

Table 3 lists the results for the percentages of 
correct classification (%CC) of the sample sets, 
which indicate that there is still some uncertainty 
regarding the virgin fiber set as classified by 
PLS-DA.

Table 3 
Results of PLS-DA classification 

 
Calibration set Prediction set 

Sample 
Number %CC Number %CC 

Virgin-recycled fiber blend 23 100 3 100 
Virgin fiber 33 97.0 8 100 
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Table 4 
Results of optimized PLS-DA classification 

 
Calibration set Prediction set 

Sample 
Number %CC Number %CC 

Virgin-recycled fiber blend 23 100 3 100 
Virgin fiber 33 100 8 100 

 

  
Figure 9: Plot of variable importance for the projection 

 
Figure 10: Predicted class scatter plot (fluorescence 

intensity and brightness variables removed) 
 
Optimized analysis 

In multivariate analysis, it is common practice to 
purposely select the variable number and/or 
variables for modeling in order to achieve good 
results.32,33 The loading plot in PCA and variable 
importance for the projection (VIP) plot in 
PLA-DA provide a good guidance in selecting the 
variable. From the loading plot (Fig. 6b), we noted 
that there are good correlations between the 
variables, i.e., fluorescent whiteness, fluorescence 
intensity and fiber fibrillation. Fig. 9 shows the VIP 
plot in the classification, which indicates that the 
fluorescent whiteness, fluorescence intensity and 
fiber fibrillation variables were more important 
than the brightness and ERIC variables.   

According to these results, we tried different 
modeling ways by removing either the less 
important variable(s) or the highly relevant 
variable(s) in the classification study based on 
PLS-DA. The results showed that the best 
classification could be performed when we 
excluded the brightness and fluorescence intensity 
from the variables for the modeling. Fig. 10 shows 
that the two class samples for both the calibration 
set and the prediction set can be clearly divided. 
The results shown in Table 4 also indicate that the 
percentages of correct classification (%CC) are 
100% for both the calibration samples and the 
prediction samples. The reason is most likely due to 

the fact that fluorescence intensity is a variable 
relevant to fluorescent whiteness and only provides 
qualitative information. Clearly, the optimized 
PLS-DA method provided better results than those 
based on SIMCA analysis in the tissue sample 
classification.  
 
CONCLUSION 

We have demonstrated the methods for the 
classification of tissue paper products made from 
virgin-recycled fiber blends and virgin fiber only. It 
can be concluded that the multivariate analysis 
technique could provide a better judgment on the 
sample classes than using only a single variable. 
Amongst different multivariate analysis methods, 
the regression based PLS-DA technique with the 
fluorescent whiteness, effective residual ink 
concentration (ERIC), and fiber fibrillation 
variables provided the best results in sample 
classification. The presented method is suitable for 
use in the examination of point-of-sale tissue paper 
samples from commercial markets. 
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