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Colorimetric evaluation is practical, accurate and fast. Starting from the generally established fact that a heat treatment 
changes the wood properties, the present paper aimed to predict the properties of heat-treated wood by using colorimetry 
and artificial neural networks (ANNs). Eucalyptus grandis and Pinus caribaea wood samples were heat-treated to 
evaluate their color, as well as physical and mechanical properties. The relationship between the wood color and its 
physical and mechanical properties was evaluated through multilayer perceptron (MLP) neural network. The heat 
treatment darkened the wood, increased its dimensional stability and reduced its mechanical resistance. Artificial neural 
networks based on colorimetric and temperature parameters were efficient in modeling the wood properties, with better 
results to predict its physical parameters. The coefficient of determination (R2) of the models was high and the root mean 
squared error (RMSE%) low – with homogeneous distribution. The findings suggest that colorimetry is adequate as a 
non-destructive tool to evaluate heat-treated wood. 
 
Keywords: artificial neural networks, color changes, Eucalyptus grandis, Pinus caribaea 
 
INTRODUCTION 

The dark color of wood increases its 
commercial value, especially in the case of tropical 
wood species. Considering the high demand for 
raw wood material and the increasingly scarce 
supply, wood from forest plantations can be used, 
but with limitations caused by light color and lower 
quality.1 Heat treatment adds value to wood from 
planted species, as it darkens the wood color, 
making it similar to that of high economic value 
wood, while also improving dimensional stability 
and resistance to xylophagous organisms.1,5 
However, modelling before this process and quality 
control need further studies.2-4  

The heat treatment can make wood from planted 
forests viable for more demanding markets. This 
process consists of the application of heat between 
120 and 250 °C,6,7 for different periods of time,8 at 
different pH9 and atmospheric pressure,10 without 
chemicals or waste generation, and, therefore, with 
reduced environmental impact. 

 
It is known that the heat treatment changes the 

cell wall structure and chemical composition of the 
wood.11–13 The heat applied destroys the cellulose 
and hemicelluloses of the wood,14,15 compounds 
with high water absorption, and responsible for the 
volumetric variation of wood according to the 
environmental conditions. On the other hand, the 
heat treatment improves the physical properties of 
wood,16,17 although the destruction of structural 
components of the cell wall can reduce its 
mechanical strength.18,19 The balance between the 
gains in physical properties and a minimal 
reduction in mechanical strength of the wood is one 
of the main challenges in heat treatment, making it 
necessary to develop methods for process control. 
Heat-treated wood properties can be predicted with 
parameters such as mass loss, density, equilibrium 
moisture content or process variables, such as 
temperature and time.3,4 
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Colorimetric evaluation, used for aesthetic 
purposes,20,21 is a fast and accurate method that can 
be used as a non-destructive tool to assess wood 
quality. The development of accurate and fast 
practices to evaluate heat-treated wood, based on 
colorimetry, can improve the process control and 
expand the application of this treatment.22 

Artificial neural networks are used in several 
areas of science, such as medicine,23 geosciences24 
and engineering,25 including wood technology.26,27 
The combination of colorimetry with modern 
modeling methods, such as artificial neural 
networks, can help in predicting the quality of heat-
treated wood. 

The objective of this study was to model the 
physical and mechanical characteristics of 
Eucalyptus grandis and Pinus caribaea heat-
treated wood based on colorimetric parameters 
using artificial neural networks. 
 
EXPERIMENTAL 
Characterization of the area evaluated  

Samples were collected in a cultivated forest on red 
oxisol in Viçosa, Minas Gerais state, Brazil (42º 53' W 
longitude and 20º 45' S latitude). The climate of this 
region, according to the Köppen classification, is 
subtropical in altitude, with average maximum and 
minimum temperatures of 26.1 °C and 14.0 °C, 
respectively. Rainfall is concentrated from October to 
March, with an average annual rainfall of 1,300 mm.28 
 
Sample preparation 

Five 16-year-old Eucalyptus grandis and five 19-
year-old Pinus caribaea trees were harvested in the 
inner region of the plantations, with height and diameter 
similar to the population average. After harvesting, a 
central plank was removed from the DAP region (1.3 
meters high). Samples of 2 × 2 × 3 cm and 2 × 2 × 30 
cm were obtained from these boards to evaluate the 
wood physical, mechanical and colorimetric properties.  

The samples were dried at 100 °C to anhydrous 
condition and heat-treated at 125, 150, 175, 200 and 225 
°C, with a heating rate of 10 °C/min and a residence 
period at maximum temperature of five hours. 
 
Physical and mechanical tests 

The physical evaluation (dry mass and dry volume) 
of the wood was carried out on 2 × 2 × 3 cm samples 
obtained immediately after the heat treatment. These 
samples were placed in a climatic chamber at 23 °C and 
50% relative humidity until the stabilization of their 
mass. 

Equilibrium moisture was calculated using the 
equation:  

   (1)  

where UEH is hygroscopic equilibrium moisture, Mu is 
the mass of the sample after being placed in the 
environment with 23 °C and 50% relative humidity, and 
Ms is the dry mass of the sample.  

The samples were immersed in water until the wood 
samples reached their maximum volume. The 
volumetric swelling was obtained with the equation: 

    (2) 

where VS is the volumetric swelling (%), Vi – the 
anhydrous volume of the sample, and Vf – the saturated 
volume of the sample. 

The moduli of elasticity (MOE) and rupture (MOR) 
were determined in 2 × 2 × 30 cm samples according to 
the American Society for Testing and Materials.29 
 
Colorimetric evaluation 

Colorimetric analysis was performed on the 
longitudinal surface of the 2 × 2 × 3 cm and 2 × 2 × 30 
cm samples, using a Konica Minolta CM-2500D 
spectrophotometer. The parameters lightness (L), red-
green coordinate or red matrix (a*) and blue-yellow 
coordinate or yellow matrix (b*) were evaluated 
according to the CIELAB 1976 color system. Saturation 
and ink angle were not included in the models, as these 
parameters are directly correlated with the red (a*) and 
yellow (b*) matrix. 
 
Statistical analysis 

The data of physical, mechanical and colorimetric 
properties were submitted to variance homogeneity 
(Bartlett’s test at 5% significance) and normality 
(Shapiro-Wilk test at 5% significance) tests and to the 
analysis of variance. The contrast between the 
treatments means was determined using the Tukey test 
at 5% significance level. 
 
Artificial neural networks (ANNs) 

The theory lying at the basis of ANNs has been 
discussed in the published literature.30,31 The Multi-
Layer Perception (MLP) is the ANNs type used in the 
present study to predict the heat-treated wood properties 
(Fig. 1). The ANNs was established with 70% (84 
samples) of the data for its training and 30% (36 
samples) for its validation per species. 

The training of the ANNs by architecture was k-n-1o, 
where k stands for the variables L, a*, b* considered as 
network inputs, n is the number of neurons in the hidden 
layer (six per species); 1 is one neuron in the output 
layer to predict the value of dependent variables in the 
training individual (EMC, VS, MOE or MOR) (Fig. 2). 
The exponential activation and the identity activation 
functions were applied in the hidden layer and in the 
output layer. 
 
Performance evaluation 

The validity of the artificial neural network 
prediction models was assessed with R2 and RMSE%. 
The one giving the highest value of the coefficient of 
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determination (R²) (Eq. 3) and the lowest root-mean-
square error in percentage (RMSE%) (Eq. 4) and with a 
regular and good residual distribution graphic was the 
most appropriate: 

   (3) 

   (4) 

where  is the observed value,  is the estimated value; 

 is the average of the observed values; n is number of 
observations. 

 

 
Figure 1: Multi-Layer Perception structure (MLP) to predict the physical and mechanical properties of the heat-treated 

Eucalyptus grandis and Pinus caribaea wood samples 
 

 
Figure 2: Artificial neural networks (ANN) architectures used to predict dependent variables: equilibrium moisture content 

(EMC), volumetric swelling (VS), modulus of elasticity (MOE) and modulus of rupture MOR of the Eucalyptus grandis and 
Pinus caribaea heat-treated wood 

 
 
RESULTS AND DISCUSSION 
Quality of heat-treated wood 

The heat treatment darkened the Eucalyptus 

grandis and Pinus caribaea wood samples. The red 
and yellow matrix decreased for E. grandis wood 
and increased, followed by a decrease, for P. 

caribaea, as the temperature increased. As 
expected, the heat treatment improved the wood 
physical properties by reducing the equilibrium 
moisture content and volumetric swelling, but 
worsened the mechanical properties, reducing the 
modulus of elasticity and rupture (Table 1). 

The increase in the heat treatment temperature 
darkened the wood, the reduction in the lightness 

was of 54% in the samples treated at 225 °C for 
both species, thus it would increase their market 
value. The reduction in lightness of the Eucalyptus 
samples occurred up to 200 °C and that of the 
Pinus up to 225 °C, with the most pronounced 
reduction for both species – between 150 and 200 
°C. This reduction in lightness can be explained by 
the formation of compounds derived from the 
degradation of hemicelluloses into low molecular 
weight sugars, which absorb visible light.32 The 
reduction in wood lightness with the heat treatment 
has also been reported for Cunninghamia 

lanceolate,33 Pinus radiata
34 and Eucalyptus 

pellita
35 wood. The reduction of the red and yellow 
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coordinates in E. grandis and P. caribaea wood, 
after being subjected to high temperatures, is 
associated to the degradation of polar extractives 
between 130 and 250 °C,6,36 similarly to this work.   

The reduction in the equilibrium moisture 
content, up to 45 and 44% lower in the Pinus and 
Eucalyptus heat-treated wood, respectively, is due 
to the chemical changes occurring during the 
heating treatment. This includes the degradation of 
hemicelluloses and cellulose,11 reducing the 
number of hydrophilic sites and, consequently, the 
water adsorption capacity of the samples.17 This 
also explains the reduction in the volumetric 
swelling of the samples, with a drop of 40 and 56% 
for Pinus and Eucalyptus, respectively. The 

improvement of physical properties shows the 
potential of the heat-treated wood to be used in 
environments with high humidity variation.  

The reduction with more than 25 and 59% in the 
moduli of elasticity and rupture of Pinus and 
Eucalyptus heat-treated wood samples can be 
explained by the degradation of chemical 
components with a structural function, such as 
cellulose.14,37 In addition, temperature degrades 
other anatomical components related to wood 
strength, such as tracheids in softwood and fibers 
in hardwood.13,16 The reduction in mechanical 
strength can restrict the use of heat-treated wood, 
especially in applications where it is subject to load 
stress. 

 
Table 1 

Lightness (L), green-red coordinate (a*), blue-yellow coordinate (b*), equilibrium moisture content (EMC), volumetric 
swelling (VS), mechanical resistance (MOE) and modulus of rupture (MOR) of Eucalyptus grandis and Pinus caribaea 

heat-treated wood 
 

Species T(°C) L a* b* EMC VS MOE MOR 
100 55.33.1a 18.39.0a 17.68.3a 10.82.4a 18.24.3a 412211.6a 12210.3a 
125 46.35.3b 16.37.6b 14.712.1b 10.42.5a 17.35.6a 40799.8a 10612.8a 
150 38.26.9c 11.818.0c 11.913.5c 9.64.4b 16.56.4b 408811.2a 9111.9b 
175 32.97.6d 10.315.0d 9.410.1d 8.42.8c 15.05.5c 388311.3a 8612.8b 
200 24.34.5e 4.215.5e 5.811.3e 6.22.2d 9.76.1d 333314.6b 5212.5c 

Eucalyptus 

grandis 

225 24.96.0e 3.014.1f 3.815.5f 6.02.7e 7.94.4e 305113.8b 4414.1c 
100 76.63.2a 9.117.1c 22.24.8c 11.73.6a 13.87.9a 239914.0a 6912.9a 
125 71.24.5b 7.814.4cd 22.96.9bc 11.92.3b 12.69.4ab 232112.4a 5911.5ab 
150 66.97.8c 10.410.5b 28.18.7a 10.43.3c 12.38.8b 211215.3ab 5316.9b 
175 55.76.5d 11.818.1ab 24.59. 6ab 9.32.0d 10.39.5c 214413.1ab 4416.3c 
200 42.28.1e 12.517.6a 20.715.8d 7.82.5e 9.09.8d 198713.8b 3214.4d 

Pinus 

caribaea 

225 31.77.3f 5.222.2d 12.412.6e 6.44.0f 8.38.2e 178313.2c 2814.5d 
Means followed by the same letter, per column and species, do not differ by the Tukey test at 5%; Values in superscript 
represent the coefficient of variation, in percentage 
 

Table 2 
Inputs: lightness (L), green-red (a*) and blue-yellow (b*) coordinates, and outputs: equilibrium moisture content (EMC), 

volumetric swelling (VS), modulus of elasticity (MOE) and rupture (MOR), for each species studies,  
for training and validation of artificial neural networks (ANNs) 

 
Training Validation 

Species Inputs Output 
R² RMSE% R² RMSE% 

EMC 0.989 2.0 0.988 2.1 
VS 0.952 5.6 0.945 6.0 

MOE 0.669 8.9 0.487 12.3 
Eucalyptus grandis L; a*; b* 

MOR 0.900 9.8 0.810 14.2 
EMC 0.987 2.0 0.965 3.4 
VS 0.857 6.7 0.555 12.8 

MOE 0.643 10.4 0.293 15.4 
Pinus caribaea L; a*; b* 

MOR 0.931 10.0 0.792 16.2 
 

The prediction derived from the artificial neural 
networks for the E. grandis and P. caribaea heat-

treated wood was satisfactory for the output 
variables, but with better results for the wood 
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physical parameters, such as equilibrium moisture 
content and volumetric swelling, with greater 
determination coefficient (R2) and lowest square 
root-mean error in percentage (RMSE%) (Table 2). 

Correlation coefficients greater than 0.945 and 
0.555 for equilibrium moisture content and 
volumetric swelling, and 0.792 and 0.293 for 
modulus of rupture and elasticity, respectively, for 
training and validation reinforce the suitability of 
artificial neural networks for predicting physical 
and mechanical properties of heat-treated wood.38 

The greater precision of these networks in 
predicting the physical parameters, compared to 
wood mechanics, is due to the smaller variation in 
the first group. Higher correlation coefficient 
values, to predict physical properties, with neural 
networks, in relation to the mechanics values of 
heat-treated wood, were also reported for density 
and equilibrium moisture of Abies bornmülleriana 
and Carpinus betulus (0.98),38 in addition to 
modulus of elasticity and rupture in panels (0.73 
and 0.66, respectively),39 and fracture toughness in 
solid wood (0.62).40  

The root mean squared error in percentage was 
lower for networks with higher correlation 
coefficients. The values of the root mean squared 
error for the physical parameters of the heat-treated 
wood (equilibrium moisture and volumetric 
swelling) were between 2 and 6.7, for the training, 
and between 2.1 and 12.8 for the validation, while 
those of the wood mechanical parameters – 

between 8.9 and 10.4, and 12.3 and 16.2 for 
training and validation, respectively. The 
coefficients of variation of the wood mechanical 
properties in the treatments were higher, between 
9.8 and 16.9, than those of the wood physical 
parameters, between 2.4 and 9.8. This greater data 
variability reduced the quality of artificial neural 
networks, but with acceptable values for this 
evaluation type. The artificial neural networks, 
using the colorimetric variables, predicted the 
physical and mechanical parameters of the heat-
treated wood with regular distribution of residues 
(Figs. 3 and 4). The homogeneous distribution of 
the errors without tendency to underestimate or 
overestimate the results of heat-treated wood 
properties from neural networks improves their 
quality. On the other hand, the physical and 
mechanical properties of the wood vary between 
individuals and parts of the same individual. These 
variations are greater for the mechanical properties, 
compared to the physical ones, which explains why 
the artificial neural networks predicted the modulus 
of rupture and elasticity with lower precision, 
compared to equilibrium moisture.41 The 
distribution of errors, the coefficient of 
determination and the mean error show the 
potential of colorimetry and artificial neural 
networks as a combined non-destructive tool to 
evaluate heat-treated wood. 
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Figure 3: Graphic distribution of residues for the artificial neural networks estimated using the training data [(A) –
Equilibrium Moisture Content EMC; (C) – Volumetric Swelling VS; (E) – Modulus of Elasticity MOE; (G) –
Modulus of Rupture MOR], and validation of the networks [(B) – Equilibrium Moisture Content EMC; (D) –
Volumetric Swelling VS; (F) – Modulus of Elasticity MOE; (H) – Modulus of Rupture MOR] from the 
colorimetric variables (L; a*; b*) of heat-treated wood of Eucalyptus grandis 
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Figure 4: Graphic distribution of residues for the artificial neural networks estimated using the training data [(A) –
Equilibrium Moisture Content EMC; (C) – Volumetric Swelling VS; (E) – Modulus of Elasticity MOE; (G) –
Modulus of Rupture MOR], and validation of the networks [(B) – Equilibrium Moisture Content EMC; (D) –
Volumetric Swelling VS; (F) – Modulus of Elasticity MOE; (H) – Modulus of Rupture MOR] from the 
colorimetric variables (L; a*; b*) of heat-treated wood of Pinus caribaea 

 
CONCLUSION 

The heat treatment reduced the lightness and 
mechanical strength of Eucalyptus grandis and 
Pinus caribaea wood samples, but improved their 
physical properties. The variation of physical 
characteristics, equilibrium moisture content and 
volumetric swelling of the wood was smaller 
between the samples subjected to the same 
treatment than that of mechanical properties, such 
as modulus of elasticity and rupture. Thus, the 
accuracy of the artificial neural networks used to 
predict the physical parameters of wood was 
higher, with correlation coefficients higher than 
0.945 and 0.555 for the equilibrium moisture 
content and volumetric swelling, and 0.792 and 
0.293 for the modulus of rupture and elasticity in 
training and validation, respectively. The 
distribution of errors was homogeneous and 
without homoscedasticity. To conclude, 
colorimetry can be used as a non-destructive tool 
with the potential to assess the quality of heat-
treated wood. 
 
ACKNOWLEDGEMENTS: The authors would 
like to thank the Brazilian agencies, Conselho 
Nacional de Desenvolvimento Científico e 

Tecnológico (CNPq), Coordenação de 
Aperfeiçoamento de Pessoal de Nível Superior 
(CAPES) and Fundação de Amparo à Pesquisa do 
Estado de Minas Gerais – FAPEMIG (APQ-03512-
18) for scholarships and financial support. The 
authors are grateful to John P. Villani (University 
of Melbourne, Australia), who revised and 
corrected the English language used in this 
manuscript. 
 
REFERENCES 
1 S. Korkut, Ind. Crop. Prod., 36, 355 (2012), 
https://doi.org/10.1016/j.indcrop.2011.10.004 
2 S. Tiryaki and C. Hamzaçebi, Measurement, 49, 266 
(2014), 
https://doi.org/10.1016/j.measurement.2013.12.004 
3 A. J. V. Zanuncio, A. G. Carvalho, L. F. da Silva, M. 
G. da Silva, A. C. O. Carneiro et al., Sci. For. Sci., 45, 
109 (2017), https://doi.org/10.18671/scifor.v45n113.10 
4 V. Nasir, S. Nourian, S. Avramidis and J. Cool, 
Wood Sci. Technol., 53, 275 (2019), 
https://doi.org/10.1007/s00226-018-1073-3 
5 Y. Liu, F. Liu, Y. Chen and J. Gao, BioResources, 
14, 8182 (2019), 
https://doi.org/10.15376/biores.14.4.8182-8195 
6 B. M. Esteves and H. M. Pereira, BioResources, 4, 
370 (2009), https://doi.org/10.15376/biores.4.1.370-404 



ANTONIO JOSÉ VINHA ZANUNCIO et al. 

 948 

7 B. F. Balkis, S. Hiziroglu and Md Tahir, Mater. 
Des., 43, 348 (2013), 
https://doi.org/10.1016/j.matdes.2012.06.054 
8 Z. Wang, Z. Zhao, J. Qian, Z. He and S. Yi, 
BioResources, 15, 211 (2020), 
https://doi.org/10.15376/biores.15.1.211-227 
9 W. Wang, J. Cao, F. Cui and X. Wang, Wood Fiber 

Sci., 44, 46 (2012), https://doi.org/10.1007/s12221-012-
0135-7 
10 Y. C. Chien, Y. Teng-Chun, H. Ke-Chang, L. 
Cheng-Chun, W. Jyh-Horng, Polym. Degrad. Stab., 158, 
220 (2018), 
https://doi.org/10.1016/j.polymdegradstab.2018.11.003 
11 J. O. Brito, F. G. Silva, M. M. Leão and G. Almeida, 
Bioresour. Technol., 99, 8545 (2008), 
https://doi.org/10.1016/j.biortech.2008.03.069 
12 P. H. G. Cademartori, P. S. B. dos Santos, L. 
Serrano, J. Labidi and D. A. Gatto, Ind. Crop. Prod., 45, 
360 (2013), 
https://doi.org/10.1016/j.indcrop.2012.12.048 
13 J. Guo, K. Song, L. Salmén and Y. Yin, Carbohyd. 
Polym., 115, 207 (2015), 
https://doi.org/10.1016/j.carbpol.2014.08.040 
14 D. Kačíková, F. Kačík, I. Čabalová and J. Ďurkovič, 
Bioresour. Technol., 144, 669 (2013), 
https://doi.org/10.1016/j.biortech.2013.06.110 
15 O. Özgenç, S. Durmaz, I. H. Boyaci and H. Eksi-
Kocak, Spectrochim. Acta A, Mol. Biomol. Spectrosc., 
171, 395 (2017), 
https://doi.org/10.1016/j.saa.2016.08.026 
16 A. J. V. Zanuncio, J. P. Motta, T. A. da Silveira, E. 
S. Farias and P. F. Trugilho, BioResources, 9, 293 
(2014), https://doi.org/10.15376/biores.9.1.293-302 
17 L. Ming-Li, L. Chun-Feng and L. Yan-Long, Wood 

Res., 64, 145 (2019) 
18 F. Hoseinzadeh, S. M. Zabihzadeh and F. 
Dastoorian, Constr. Build. Mater., 226, 220 (2019), 
https://doi.org/10.1016/j.conbuildmat.2019.07.181 
19 S. Namari, L. Drosky, B. Pudlitz, P. Haller, A. 
Sotayo et al., Constr. Build. Mater., 301, 124269 (2021), 
https://doi.org/10.1016/j.conbuildmat.2021.124269 
20 M. Gašparík, M. Gaff, F. Kačík and A. Sikora, 
BioResources, 14, 2667 (2019), 
https://doi.org/10.15376/biores.14.2.2667-2683 
21 S. Hirata, S. Hayashi and M. Ohta, J. Wood Sci., 66, 
36 (2020), https://doi.org/10.1186/s10086-020-01883-2 
22 T. T. Nguyen, T. H. Van Nguyen, J. Xiaodi, Y. 
Bingnan, H. M. Trinh et al., Eur. J. Wood Wood Prod., 
77, 1107 (2019), https://doi.org/10.1007/s00107-019-
01449-0 
23 R. Sutradhar and L. Barbera, J. Pain Symptom 

Manag., 60, 1 (2020), 

https://doi.org/10.1016/j.jpainsymman.2020.02.010 
24 X. Ni, M. Xun, C. Cao, W. Chen, B. Yang et al., J. 
Appl. Remote Sens., 14, 1 (2019), 
https://doi.org/10.1117/1.JRS.14.022207 
25 K. Tijanić, D. Car-Pušić and M. Šperac, Neural 

Comput. Appl., 32, 9343 (2020), 
https://doi.org/10.1007/s00521-019-04443-y 
26 H. Chai, X. Chen, Y. Cai and J. Zhao, Forests, 10, 1 
(2018), https://doi.org/10.3390/f10010016 
27 I. Akyüz, Turkish J. Agric. For. 43, 368 (2019), 
https://doi.org/10.3906/tar-1901-20 
28 C. A. Alvares, J. L. Stape, P. C. Sentelhas, J. L. M. 
Gonçalves and G. Sparovek, Meteorol. Zeitschrift, 22, 
711 (2013), https://doi.org/10.1127/0941-
2948/2013/0507 
29 American Society for Testing and Materials, ASTM 
D143-21 31 (2021), https://doi.org/10.1520/D0143-14 
30 S. Haykin, “Redes neurais: princípios e prática”, 
[“Neural Networks: Principles and Practice”, in 
Portuguese], Porto Alegre, Bookman, 2001 
31 J. Heaton, Genet. Program. Evolvable Mach., 19, 
305 (2018), https://doi.org/10.1007/s10710-017-9314-z 
32 V. Kučerová, R. Lagaňa, E. Výbohová and T. 
Hýrošová, BioResources, 11, 9079 (2016), 
https://doi.org/10.15376/biores.11.4.9079-9094 
33 X. Cui and J. Matsumura, Forests 10, 791 (2019) 
34 Z. Fu, F. Zhou, X. Gao, X. Weng and Y. Zhou, 
Meas. J. Int. Meas. Confed., 152, 107215 (2020), 
https://doi.org/10.1016/j.measurement.2019.107215 
35 A. J. V. Zanuncio, A. G. Carvalho, M. T. de Souza, 
C. M. Jardim, A. C. O. Carneiro et al., Maderas Cienc. 
Tecnol., 17, 857 (2016), 
http://dx.doi.org/10.4067/S0718-221X2015005000074 
36 E. Mészáros, E. Jakab and G. Várhegyi, J. Anal. 
Appl. Pyrol., 79, 61 (2007), 
https://doi.org/10.1016/j.jaap.2006.12.007 
37 E. Durmaz, T. Ucuncu and M. Karamanoglu, 
BioResources, 14, 9531 (2019), 
https://doi.org/10.15376/biores.14.4.9531-9543 
38 S. Ozsahin and M. Murat, Eur. J. Wood Wood Prod., 
76, 563 (2018), https://doi.org/10.1007/s00107-017-
1219-2 
39 F. G. Fernández, P. de Palacios, L. G. Esteban, A. 
Garcia-Iruela, B. G. Rodrigo et al., Compos. Part B 

Eng., 43, 3528 (2012), 
https://doi.org/10.1016/j.compositesb.2011.11.054 
40 S. Samarasinghe, D. Kulasiri and Jamieson, Silva 

Fenn., 41, 105 (2007), https://doi.org/10.14214/sf.309 
41 A. A. V. Assad, A. W. Ballarin, M. L. M Freitas and 
L. E. Longui, Madera y Bosques, 26, 2611905 (2020), 
https://doi.org/10.21829/myb.2020.2611905 

 
 
 
 


