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The yield of substitution of ethylene oxide in the hydroxyethyl cellulose reaction is a crucial parameter disclosed by 
molar substitution and is closely related to the performance of the polymer. A simple, fast and green method for 
determining the molar substitution of hydroxyethyl cellulose has been developed in this study, using near infrared 
spectroscopy (NIRS). One of the major advantages of this method is saving time for the quality control procedures in 
chemical industry – at least 7 hours compared to the reference gas chromatography method. This technique eliminates 
chemical reactions, the need to manipulate hazardous materials, and minimizes waste generation and energy 
consumption. NIRS spectra were collected in the range from 5708.26 to 5553.98 cm-1 for samples with molar 
substitution from 1.18 to 2.14. Partial least squares regression was used, providing a RMSEC (root mean square error 
of calibration) of 0.00363 and a RMSEP (root mean square error of prediction) of 0.0171.  
 
Keywords: ethylene oxide efficiency, hydroxyethyl cellulose (HEC), molar substitution (MS), near infrared 
spectroscopy (NIRS), partial least squares (PLS) regression 
 
INTRODUCTION 

Water soluble hydroxyethyl cellulose is 
manufactured by reacting alkali cellulose with 
ethylene oxide at elevated temperatures and 
pressures in a mixture of organic solvents and 
water.1 This reaction, having a large amount of 
solvent as compared to the cellulose content, has a 
very low yield of substitution; the ethylene oxide 
reacts not only with the cellulose, but also with 
the available water in the medium.  

This is the reason why, for obtaining a specific 
level of substitution or molar substitution (MS), 
ethylene oxide has to be added in larger amounts 
than the desired MS. 

 The average number of moles of substituent 
groups per anhydroglucose unit is known as molar 
substitution (MS).2  

The ethylene oxide (EO) yield is calculated in 
terms of MS as follows: 
 

                                (1) 
where Real MS = MS obtained by the analytical 
procedure; Loaded MS = charge of EO 
moles/charge of AGU moles (anhydroglucose 
unit, dry basis). Note: for the calculation, the 
charges within the reaction are considered. 

Vesa Myllymaki and Reijo Aksela reported 
ethylene oxide efficiencies of 50 to 70% in alkali 
catalyzed hydroxyethyl ether formation.3 Other 
authors reported even lesser efficiencies in the 
homogeneous etherification reaction – of 20 to 
30%.4  

This parameter, the MS, controls the solubility 
and compatibility properties of the product. Low 
substitutions, MS 0.05-0.5, are for products 
soluble only in aqueous alkali; while MS ≥ 1.5 
produces water soluble hydroxyethyl cellulose 
(HEC).5 HEC is a non-ionic polymer that is water 
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soluble and is a rheology modifier used in 
multiple applications. Low MS products have 
been used as sizing agents in the textile industry 
and as raw material for packaging film.1 Most 
commercial HECs have their MS between 1.5 and 
4, and are used as thickeners in cosmetic 
preparations,6 but also as thickeners, stabilizers 
and suspending agents in water-borne paints;7 in 
construction, helping to reduce the amount of 
water in formulations, improving the adhesion, 
strength and plasticity of the materials;8 in oil 
field applications, used for fluid loss control in 
water-based drilling fluids.9 Furthermore, high 
molecular weight HEC is used in the 
pharmaceutical industry as an excipient to provide 
a swellable diffusion barrier in controlled release 
applications. 

The MS, determined by analytical procedures, 
is the parameter that depicts the efficiency of 
ethylene oxide substitution, it is crucial to guide 
and determine the best manufacturing conditions 
of the cellulose ether reactions, as well as to 
identify the product’s fields of application, which 
are related to this parameter. The official method 
for determining the MS is the gas chromatography 
technique, which involves a complicated process 
of reaction as pretreatment. Simple and rapid 
analytical techniques are always the best option 
for quality control departments in the chemical 
industry. Hence, it is necessary to implement a 
method that allows obtaining rapid and accurate 
results of MS.  

In 1971, Svante Wold invented the word 
‘chemometrics’, the art of extracting relevant 
chemical information from data reproduced in 
chemical experiments.10 Chemometrics is the 
bridge between connecting the state of a chemical 
system to the measurements of the system. It has 
become an essential part in modern chemical and 
biomedical industries. Near infrared spectroscopy 
is a simple and fast technique, which has already 
been used in many analytical applications. As 
mentioned by Yongfu Diao et al., to optimally 
develop and use HEC, more detailed information 
on its complex structural and functional properties 
is required. Consequently, there is a growing 
urgency to develop novel analytical methods for 
the characterization of HEC.11  

The ASTM D 4794-9412 is the official method 
currently used to determine hydroxyethoxyl 
content in cellulose ether products from which the 
MS can be calculated. The procedure involves a 
reaction developed in Reacti-Vials, and has a 
condition for acceptance: the content should be 

discarded if the loss is greater than 25 mg at the 
end of the reaction, the problem is the hermeticity 
of the required Reacti-Vials and Mininert valves, 
because air tightness fails usually two of three 
times. The reactants used in the gas 
chromatography (GC) technique involve 
hazardous materials, whereas with the NIRS 
technique, the risk of causing damage to the 
analyst and the environment is eliminated. “It is 
better to prevent waste than to treat or clean up 
waste after it is formed”,13 as mentioned in the 
first of the Twelve Principles of Green Chemistry. 
Another of the principles pursued by the 
implementation of the NIRS alternative is the 
elimination of unnecessary substances, minimized 
energy consumption and reduced potential for 
chemical accidents. 

Zhou (2005) reported the measurement of the 
MS in HEC by NMR, in combination with 
elemental analysis to confirm the results,4 but 
although it represents an alternative to the official 
GC method, it is a complex and expensive 
technology.  

NIRS is a faster technique, compared to the 
other ones, it is non-destructive14 and does not 
require any reaction. Moreover, it is a reliable 
technique, even in the hands of relatively 
untrained personnel.15 NIRS has been widely used 
for quantifying components, as described in a 
study aiming to evaluate the feasibility of using 
multipoint NIRS for in-line moisture content 
quantification during the freeze-drying process.16 
In another field of application, it is a possible 
alternative to GC for the quantitative analysis of 
fatty acids in forages;17 in addition, the protein 
content of A. auricula was successfully 
determined using this technique.18 Likewise, in 
food chemistry, it was found that NIRS could be 
used as an easy, rapid tool to quantitatively 
predict free amino acids and sugars in Chinese 
rice wine without sophisticated methods19-20 and 
to determine the quality factors in food 
products.21-22 It has also been used in combination 
with other techniques for the characterization and 
evaluation of petroleum with satisfactory results.23 
A combination of NIRS and refractometry 
demonstrated to be an accurate and reliable 
method to determine the concentration of alcohol 
and extract in different beer samples.24  

Another important application is the in-time 
on-process ability of high scanning speed and 
high sensitivity to catch rapid changes in 
hydrolysis reactions, allowing studying the kinetic 
behaviors.25 This can be a substitute for some 
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costly and time-consuming conventional wet 
chemistry techniques, the data generated can be 
readily used for efficient risk assessments and 
effective decision making programs for 
environmental safety.26  

No studies about the molar substitution (or 
hydroxyethyl content) by NIRS on HEC were 
found in the literature. Recently, an article was 
published about NIRS for the determination of the 
hydroxypropyl content in a different molecule, the 
hydroxypropyl methylcellulose (HPMC),27 
exploring a range from approx. 5.5 to 10%; while 
in the present study the MS range of the model 
represents the hydroxyethoxyl substitution range 
from 35 to 50%, besides, the reference techniques 
used to validate the NIRS method are different.  

As mentioned before, the most developed 
methods in NIRS use partial least squares (PLS) 
as the regression technique for the calibration of 
the models: the advantages of NIR spectroscopy 
and the PLS method lie in their abilities to 
develop multivariate regression models with good 
correlation coefficients and low predictive 
errors.28  

PLS regression is a recent technique that 
generalizes and combines features from principal 
component analysis and multiple regression. It is 
particularly useful when we need to predict a set 
of dependent variables from a large set of 
independent variables (i.e. predictors). It 
originated in the social sciences (specifically 
economy),29 but became popular in chemometrics 
(i.e. computational chemistry) in part due to 
Herman’s son Svante30 and in sensory 
evaluation.31  

PLS-regression, PLSR, is the PLS approach in 
its simplest, and in chemistry and technology, the 
most used form is the two-block one. PLSR is a 
method for relating two data matrices, X and Y, 
by a linear multivariate model, but goes beyond 
traditional regression in that it also models the 
structure of X and Y. PLSR derives its usefulness 
from its ability to analyze data with many noisy, 
collinear and even incomplete variables in both X 
and Y. PLSR has the desirable property that the 
precision of the model parameters improves with 
the increasing number of relevant variables and 
observations.32  

The PLS method is popular in the industries 
that collect correlated predictor data, for example, 
for multivariate calibration in analytical 
chemistry; for spectroscopy in chemometrics; and 
for quantitative structure activity relationships in 
drug design. The PLS method extracts orthogonal 

linear combinations of predictors, known as 
factors, from the predictor data, which explain 
variance in both the predictors and the 
response(s).33 PLS is considered especially useful 
for constructing prediction equations, when there 
are many explanatory variables and comparatively 
little sample data.34 

 
EXPERIMENTAL  
Apparatus and materials 

NIR spectra were collected in a Thermo Scientific 
Antares II Near IR Analyzer, equipped with the 
Thermo Result 3 SP5 Build 25 Integration software for 
data collection and the TQ Analyst 8.4.259 software 
for data treatment using PLS. 

The GC analysis, used as reference, was performed 
on a Bruker Scion 456-GC, with a TCD detector, using 
Compass CDS 3.0 version 3.0.0.68 – Bruker GC 
Chromatography data system.  
 
MS determination by GC 

It is important to mention the methodology of GC 
to understand the reason for developing an alternative 
to it that does not involve the complexity found in this 
reference method, the ASTM D 4794-94 (reapproved, 
2009).12 The reaction of hydrogen iodide with the 
cellulose ether liberates a mol of iodoethane per each 
mol of hydroxyethoxyl substituted on the cellulose 
chain. The iodoethane is extracted in situ with 1,2-
xylene and quantified by GC, using an internal 
standard technique. The determination involves the 
following procedure: drying the sample for 1 h at 105 
°C, weighing 60 to 80 mg of the specimen in a clean 5-
mL Reacti-Vial (already at constant weight); adding 2 
mL of a standard solution of toluene and 1,2 xylene, 
and adding 2 mL of hydrogen iodide. The vial must be 
capped tightly and weighed, shaken and placed in a 
heating block at 180 ± 5 °C for 2 h. After removing 
from heat and cooling the vial, the specimen will 
separate into two layers, it has to be reweighed to 
determine any loss due to leakage. Vial content should 
be discarded if the loss is greater than 25 mg. The 
analysis is done by injecting 1.0 µL of the upper layer 
of the specimen and using the data of known weights 
of toluene and sample for the preparation to perform 
the calculations. 

The final data obtained by the method represents 
the hydroxyethoxyl content in the cellulose ether, this 
result should be corrected for ash content and, then, it 
can be converted to MS by the following formula: 

                (2) 
where H = % hydroxyethoxyl (ash-free basis); 162 = 
molecular weight of anhydro cellulose unit; 44 = 
molecular weight of ethylene oxide; 6100 = factorized 
number for transforming hydroxyethoxyl group to 
ethylene oxide. 
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Calibration model in NIR 
MS determination in HEC was performed on a total 

of 27 samples, from which 18 were selected for the 
calibration set and the rest were used as the validation 
set. The models developed were constructed with 
different conditions, including the spectral range, 
number of PLS factors and data treatment processes. 
The PLS technique was selected according to the 
criteria of having a large number of components, 
variable spectral baselines, and a sample matrix with 
unknown materials or impurities.35 
 
Sample treatment for NIRS 

Although the water content specification for the 
HEC product used as sample was 5% max., it was 
subjected to a drying process of 1 h at 105 °C before 
processing, and then sieved through an ASTM 40 
mesh. 

 
RESULTS AND DISCUSSION 
GC analysis 

The samples were analyzed by gas 
chromatography by the method for Determination 
of Hydroxyethoxyl Substitution in Cellulose 
Ether Products12 and by applying the formula for 
molar substitution, as already described. Each 
sample was run in duplicate and each Reacti-Vial 
content was injected 20 times. To ensure the 
correctness of the results, the standard deviation 
(SD) was applied to the data and the control limits 
were calculated by the mean ± SD. The data 
found beyond the established values for the 
control were discarded; the rest of the results were 
used to calculate the mean. Finally, the MS was 
calculated by the mean of the duplicates. The 

average SD found for the results by this method 
was 0.0204. 

 
Calibration model development 

To build the NIRS method for MS 
determination, nine samples were randomly 
selected for the validation set and 18 samples 
were used as the calibration set. Calibration 
models by partial least squares (PLS) were built 
and used to predict the MS in the validation set. 
These models were constructed with varying 
conditions, including the use of the original 
spectra, applying first and second derivatives; 
testing with different spectral ranges, number of 
PLS factors, and data pretreatment processes. 
Performance was judged by the values of 
coefficient R2, PRESS (predictive residual sum of 
squares), RMSECV (root mean squared error of 
cross-validation), RMSEC (root mean square 
error of calibration), and RMSEP (root mean 
square error of prediction). The selected range of 
molar substitution was from 1.18 to 2.14, which 
covers the grade of material under study – low 
viscosity hydroxyethyl cellulose. 

The development of the ideal model in NIR 
consisted, in the first place, in selecting the 
predictive analytical technique. As mentioned 
before, PLS was selected, and in addition, the 
standards were selected and analyzed by the 
reference technique and then measured by NIRS; 
the data were studied within different regions of 
the NIR spectra, and after a long search for the 
best correlation, the region was defined in the 
range of 5708.26 to 5553.98 cm-1.  

 
 

 
 

Figure 1: Main regions identified for representing different absorbances between HEC and cellulose 
used as raw material 

 
The main regions studied for constructing the 

model were selected according to the literature36 
and the study of the NIR spectra differences 
found between the cellulose samples used as raw 
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material for the HEC and the hydroxyethyl 
cellulose samples. Figure 1 shows two sets of 
spectral patterns, one corresponding to the raw 
cellulose material (the ones below, near to the “x” 
axis), and the other for HEC – the product; this 
last one is situated in the upper position, where 
larger absorbance is shown compared to that in 
the raw cellulose pattern.  

In Figure 1, there are some rectangles, 
indicating the zones where the major differences 
were found between the raw material and the final 
product. These regions were explored in order to 
find the one with the best sensitivity for 
identifying the substitution of cellulose. In the 
region from 4400 to 4200 cm-1, the wavenumber 
of 4400 cm-1 corresponds to O-H/C-O from 
glucose, the peak at 4386 cm-1 represents C-H 
starch, those at 4307, 4292, 4283 and 4252 cm-1 
are ascribed to C-H groups, all corresponding to 
polysaccharides. Nevertheless, in this region, poor 
correspondence was found in the calibration 
between the results for MS by NIR and GC.  

The region from 5300 to 5000 cm-1, shown in 
Figure 1, was discarded because it represents the 
water content in the samples. This was observed 
by comparing the samples before and after the 
drying process for cellulose and HEC. This is the 
reason for establishing 1 h drying of the sample at 
105 °C before the analysis, even though the 
product had a water content specification of 
maximum 5%. Another pretreatment implemented 
was to pass the samples through a 40-ASTM 
mesh: it is preferable to have a regular size in the 
samples for the study, because particle size can 
interfere with the NIR measurement.14 The above-
mentioned lines were corroborated with findings 
in the literature: in this region, there are different 
O-H bonds all related to water: the wavenumbers 
5200, 5155 and 5150 cm-1 identify correspond to 
the O-H assigned to molecular water; that of 5181 
cm-1 is ascribed to O-H stretching and HOH 
bending in polysaccharides; that of 5102 cm-1 
identifies polymeric O-H for polysaccharides. The 
rest of the wavenumbers up to 5000 cm-1 
correspond to amino groups. This region, from 
5300 to 5000 cm-1, was eliminated from the study 
for searching the best area of calibration for MS.  

In the region from 5950 to 5500 cm-1, the 
methylene functional group is identified in 
different structures. From the literature, the main 
ones related to the functional group in the study 
were as follows: 5675 cm-1 and 5666 cm-1 for C-H 
methylene corresponding to hydrocarbons; C-H 
methyl aromatic associated (ArCH3) to 5650 cm-1 

and C-H methylene (CH2) corresponding to 
cellulose at 5618 cm-1. Thus, this region shows 
the best possibilities for developing the 
calibration model.  

The last region identifying differences in the 
NIR spectra of cellulose and hydroxyethyl 
cellulose was from 6900 to 6000 cm-1: the region 
from 6897 to 6471 cm-1 is mainly related to 
amines, the wavenumbers of 6330 and 6319 cm-1 
are related to O-H in alcohols and water. 
Therefore, this region was also left out from the 
study.  

The method was calibrated and validated with 
more samples. The selected wavenumber range 
was the one that provided the best correlation. In 
this study, several spectral regions were tested, 
including some narrow regions with only a few 
spectral data points (2 nm/one point), but often 
the correlations were of even less than 0.60, only 
the selected regions showed positive correlation 
between the reference values and those calculated 
by the model in NIRS. 

Partial least squares (PLS) calibration used by 
TQ Analyst software is based on the PLS1 
algorithm. It is a statistical approach to 
quantitative analysis. The PLS1 algorithm 
examines the specified region or regions of the 
calibration spectra to determine the areas varying 
statistically as a function of component 
concentration.35 

With linear regression, the best straight line, 
known as regression curve, is located, which can 
be used for determining the concentration of the 
samples. Nevertheless, by using PLS, a regression 
of the registers of the sample is done instead of 
the optical data that are directly produced by NIR 
instruments. The PLS method is formally defined 
as the method of predictive regression of two 
blocks based on latent variables.  

The responses of a NIR instrument to different 
wavenumbers are usually highly collinear 
(intercorrelated), which is thus a problem in an 
ordinary multiple lineal regression, because it 
assumes each variable as unique. For being 
useful, NIR calibration has to handle the 
phenomena of multicollinearity. In the regression 
methods that use estimated latent variables, the 
collinearity is seen as a stabilizing advantage 
rather than as a problem.16  

Multivariate calibration can be viewed as a 
two-stage procedure. First, the model is 
constructed using training samples, for which the 
predictor and predictand variables are known or 
measured. Next, the model is validated by 
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comparing the predictions against the reference 
values for samples that were not used for model 
building. The result of this validation step is an 
estimate of the average prediction uncertainty, 
often denoted as root mean squared error of 
prediction (RMSEP).36 

Different regions were studied using PLS with 
MSC (multiplicative signal correction). MSC is 
an important method for the correction of 
scattered light, which is used to modify additive 
and multiplicative effects in spectral data.35 

Figure 2 displays a plot of RMSECV of the 
developed method in NIRS vs. PLS factors, 
indicating that a calibration model built with 10 
PLS factors performs best in terms of the value of 
RMSECV. The RMSECV was 0.10378 for this 
model. 

The best estimate of the future performance of 
a calibration model is the RMSECV, which is 
calculated in cross-validation by iteratively 
removing (and replacing) each sample of the data 
set. The optimal number of factors is selected 
considering the first minimum in the plot, or 
choosing the global minimum if it yields 
significantly lower RMSECV. For this method, 
different numbers of factors were studied, 10 
factors were selected according to the mentioned 
criteria.  

When the PLS method is calibrated, all of the 
relevant concentration information and spectral 
information in the analyzed region or regions of 
the calibrated standards is condensed into a set of 
factors. Each factor represents an independent 
source of variation in the data. The factors are 
ranked by the amount of variance they describe. 
The first factor describes most of the variation in 
the calibration standards. Each additional factor 
describes most of the remaining variation. 
Therefore, the first factor contains the most 
common information in the data. The other 
factors contain information that is more specific, 
representing small variations in the data, which 
are often important to the analysis.35  

Figure 3 (A) illustrates the performance of the 
selected calibration model with the calibration 
data, having a RMSEC of 0.00363 and a 
correlation coefficient of 0.9999. For the 
validation data, represented in Figure 3 (B), this 
model has a RMSEP of 0.0156. The models, as 
can be seen in the MS correlation plot, illustrate 
good correspondence between the results obtained 
by the reference GC method and the ones 
obtained by the development of the calibration in 
NIRS and PLS regression for both sets of data, 
calibration and validation. 

 

 
 

Figure 2: RMSECV (root mean squared error of cross-validation) vs. PLS factors in the range of 
5708.26-5553.98 cm-1 

 

 A)  B) 
 

Figure 3: MS correlation plots for (A) the calibration data set and (B) the validation data set, by PLS, 
with 10 factors in the spectral range of 5708.26-5553.98 cm-1 
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Figure 4: Difference plot for calibration (o) and validation (+) data sets by PLS with 10 factors in 
spectral range of 5708.26 to 5553.98 cm-1 

 
PLS is not a method, it is a set of methods with 

associated algorithms. To mention some of them: 
the algorithm Path-PLS, the algorithm PLS of 
principal component analysis (NIPALS-PCA) or 
the algorithm PLS for canonic correction analysis 
(NIPALS-CCA). Something in common for the 
PLS methods is that all of them have an algorithm 
associated with a uniform format. The PLS 
methods proceed in a less intuitive manner 
compared to classical statistical methods, are not 
formulated in terms to be optimized algebraically, 
and no criteria of maximization or minimization 
are presented. Generally, a model is expressed in 
a way for identifying components and equations 
between components. Instead of developing an 
analytical solution, the development is done until 
reaching a solution through a series of sequential 
repetitive steps for obtaining a stable 
approximation. 

Figure 4 represents the difference found in the 
results between the data obtained by the GC 
technique and the results calculated by applying 
the calibration model of the NIR technique. Only 
three of nine validation points display a difference 
of 0.0203, 0.0232 and 0.0247, respectively, while 
the rest of the data had a difference lower than 
0.0193, three of them – below 0.01. Prediction 
errors are calculated for the samples as the 
difference between prediction and reference 
values.37  

Most of the data shown in Figure 4 report 
minor differences from the standard deviation of 
the reference method itself; the SD for the 
chromatography method is 0.02, compared with 
the results of the difference between the two 
techniques, NIR represents an equivalent 
variation against the reference method. 
 
CONCLUSION 

The implementation of the method for 
determining the MS in HEC in the range from 

1.18 to 2.14, using NIR spectroscopy in the 
spectral range of 5708.26-5553.98 cm-1, exhibited 
excellent correlation with the data obtained by the 
GC method based on ASTM D 4794-9412 used as 
reference for building the calibration model.  

The NIR spectroscopy technique only requires 
a few minutes for measuring and obtaining the 
MS for a range of 1.18-2.14, with the most 
important advantages of simplicity, no need for 
any reaction for the determination, rapidity – 
saving between 7 and 12 h of the analyst’s labor, 
and providing reliable results, without involving 
any technical difficulties due to the hermeticity of 
the required vials. These advantages are translated 
into a simple manner for obtaining critical data 
for the industrial reaction process of cellulose 
ether, having the specifications desired for 
specific applications. 

The implementation of this new alternative 
provides a tool for Green Chemistry by 
eliminating the use of chemicals and the risk for 
humans and the environment represented by the 
GC methodology. 

A new, faster, greener and accurate method for 
determining molar substitution in hydroxyethyl 
cellulose has been demonstrated. The method is 
suitable for an MS range from 1.18 to 2.14; 
nevertheless, it can be adjusted by constructing a 
new calibration for higher MS; also, the ideal 
spectral zone can be identified. 
 
ACKNOWLEDGMENT: We thank Grupo 
Petroquímico Beta for providing funding, samples 
and resources for this study. 
 
REFERENCES 
1 J. N. BeMiller and R. L. Whistler, “Industrial 
Gums: Polysaccharides and Their Derivatives”, 3rd ed., 
Academic Press Inc., USA, 1993, pp. 649-672. 
2 O. Ololade, “Natural Polymers: Industry 
Techniques and Applications”, Springer, Switzerland, 
2016, p. 228. 

767 
 



M. M. LÓPEZ-TAPIA et al. 

3 V. Myllymaki, R. Aksela and A. Kemlr, “Method 
for Preparing a Cellulose Ether”, US 2007/0112185 
A1, 2007. 
4 Q. Zhou, L. Zhang, M. Li, X. Wu and G. Cheng, 
Polym. Bull., 53, 243 (2005). 
5 H. F. Mark, “Encyclopedia of Polymer Science and 
Technology”, concise, 3rd ed., John Wiley & Sons, 
USA, 2007, p. 172. 
6 S. Dumitriu, “Polymeric Biomaterials”, revised and 
expanded, 2nd ed., CRC Press, New York, 2001. 
7 A. A. Tracton, “Coatings Materials and Surface 
Coatings”, CRC Press, Boca Ratón, FL, 2006. 
8 F. Pacheco-Torgal, V. Ivanov, N. Karak and H. 
Jonkers, “Biopolymers and Biotech Admixtures for 
Eco-efficient Construction Materials”, Woodhead 
Publishing, USA, 2016, p. 231. 
9 J. Fink, “Petroleum Engineer’s Guide to Oil Field 
Chemicals and Fluids”, Gulf Professional Publishing, 
USA, 2012. 
10 C. Márquez Ruíz, “Modelo de regresión PLS”, 
Universidad de Sevilla, Spain, 2017. 
11 Y. Diao, M. Song, Y. Zhang, L.-Y. Shi, Y. Lv et 
al., Carbohyd. Polym., 169, 92 (2017). 
12 ASTM D 4794-94, “Standard Test Method for 
Determination of Ethoxyl or Hydroxyethoxyl 
Substitution in Cellulose Ether Products by Gas 
Chromatography”, reapproved in 2009. 
13 C. Jiménez-González and D. J. C. Constable, 
“Green Chemistry and Engineering. A Practical Design 
Approach”, John Wiley & Sons, 2011, pp. 17-39. 
14 X. P. Maldague, “Theory and Practice of Infrared 
Technology for Nondestructive Testing”, John Wiley 
& Sons, USA, 2001. 
15 D. A. Burns and E. W. Ciurczak, “Handbook of 
Near Infrared Analysis”, 3rd ed., CRC Press, Boca 
Ratón FL, 2007. 
16 A. Kauppinen, M. Toiviainen, O. Korhonen, J. 
Aaltonen, K. Järvinen et al., Anal. Chem., 85, 2377 
(2013). 
17 J. G. Foster, W. M. Clapham and J. M. Fedders, J. 
Agric. Food Chem., 54, 9 (2006). 
18 L. Fei, H. Yong and G. Sun, J. Agric. Food Chem., 
57, 4520 (2009). 

19 S. Fei, N. Xiaoying, Y. Danting, Y. Yibin, L. Bobin 
et al., J. Agric. Food Chem., 58, 9809 (2010). 
20 Q. Ouyang, Q. Chen and J. Zhao, Spectrochim. 
Acta, Part A, 154, 42 (2016). 
21 S. Li, X. Zhang, Y. Shan, D. Su, Q. Ma et al., Food 
Chem., 218, 231 (2017). 
22 A. Guelpa, F. Marini, A. du Plessis, R. Slabbert and 
M. Manley, Food Control, 73, 1388 (2017).  
23 J. T. C. Rocha, L. M. S. L. Oliveira, J. C. M. Dias, 
U. B. Pinto, M. de L. S. P. Marquez et al., Energ. 
Fuels, 30, 1 (2015). 
24 S. Castritius, A. Kron, T. Schafer, M. Radle and D. 
H. Diedrich, J. Agric. Food Chem., 58, 12634 (2010). 
25 Q. Zhai, C. Zhou, S. Zhao, C. Peng and Y. Han, 
Ind. Eng. Chem. Res., 53, 13598 (2014). 
26 B. Singh, D. F. Malley, A. Farenhorst and P. 
Williams, J. Agric. Food Chem., 60, 9948 (2012). 
27 Q. Guo, L. Nie, L. Li and H. Zang, Spectrochim. 
Acta, Part A, 177, 158 (2017). 
28 X. Xiao, Y. Hou, J. Du, Y. Liu, L. Dong et al., J. 
Agric. Food Chem., 60, 7830 (2012). 
29 H. Wold, “Estimation of Principal Components and 
Related Models by Iterative Least Squares. 
Multivariate Analysis”, Academic Press, New York, 
1966, pp. 391-420. 
30 P. Geladi and B. R. Kowalski, Anal. Chim. Acta, 
185, 1 (1986). 
31 H. Martens and T. Naes, “Multivariate 
Calibration”, John Wiley & Sons, New York, 1989. 
32 S. Wold, M. Sjöström and L. Eriksson, Chemometr. 
Intell. Lab., 58, 109 (2001). 
33 S. Wold, “PLS for Multivariate Linear Modeling 
QSAR: Chemometric Methods in Molecular Design. 
Methods and Principles in Medicinal Chemistry”, 
Verlag-Chemie, 1994. 
34 A. Hoskuldsson, J. Chemometr., 2, 211 (1988). 
35 TQ Analyst User’s Guide, Thermo Fisher Scientific 
Inc., 2007. 
36 J. Workman and Jr. L. Weyer, “Practical Guide to 
Interpretive Near Infrared Spectroscopy”, CRC Press, 
USA, 2008. 
37 N. M. Faber, X. H. Song and P. K. Hopke, Trends 
Anal. Chem., 22, 5 (2003). 

 

768 
 


