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Response surface methodology (RSM) and artificial neural network (ANN) were used to simulate and optimize 

cellulase production by Hypocrea sp. Z28 by submerged fermentation. Results showed ANN had higher simulation 

accuracy than RSM. Cellulase production optimized by RSM was 5.48 U/mL, while the corresponding experimental 

value was 5.67±0.32 U/mL. Using ANN as a prediction function, a maximum cellulase production of 5.96 U/mL was 

searched by the genetic algorithm, and the corresponding experimental value was 6.01±0.43 U/mL. Compared to RSM, 

ANN brought higher and more accurate cellulase production values. The application of ANN to optimize cellulase 

production proved successful. 
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INTRODUCTION 
The application of cellulase in many 

industries, including bioenergy and biobased 

materials, is seriously restricted by its expensive 

production.1 Cellulase is mainly produced by 

microorganisms,2 and in order to reduce its 

production costs, the first step is to screen out a 

high cellulase-production strain, no matter what 

techniques are used,3 and then to optimize the 

cellulase production from the obtained strain.
4-6

 

The conventional one-factor-at-a-time 

approach of optimization is not only laborious, 

but also ignores the combined interaction of the 

factors.
7-8

 To solve this problem, model-based 

optimization techniques have been proposed. Due 

to the high complexity of microbial cellulase 

production, it is impossible to build a mechanistic 

model for the fermentation process. Thus, it is 

better to use empirical models to identify the 

relationship between cellulase production and 

fermentation conditions.4 Such a model could be 

built by RSM (response surface methodology). 

RSM is a frequently used technique for building 

models    and   determining  the   optimal   process  

 

conditions.7-9 During RSM, a polynomial 

expression could be obtained from non-linear 

regression analysis of a pre-designed 

experimental matrix. In contrast, artificial neural 

network (ANN) was thought as another superior 

tool.
10-12

 ANN could simulate an arbitrary 

bioprocess to any precision, and has made much 

progress in optimizing many bioprocess 

behaviors.
13-14

 

In this study, ANN and RSM were used to 

simulate and optimize cellulase production by 

submerged fermentation. 

 

EXPERIMENTAL 
Materials 

Hypocrea sp. Z28 was isolated in our laboratory 

previously. It was maintained on potato dextrose agar 

(PDA) slants and stored at 4 °C.  

Rice straw was obtained from a farm in a local 

harvest and dried naturally. The dried straw was milled 

to small particles and the nominal sizes of <80 mesh 

were collected and used as the sole carbon source for 

microbial cellulase production. 
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Submerged fermentation 
In order to prepare inoculums, Z28 slant cultures 

were incubated on liquid PDA medium at 30 °C and 

110 rpm for 72 h. Then, 2% (v/v) inoculums were 

transferred into submerged fermentation medium for 

cellulase production at 120 rpm. 

Temperature, pH and time are three important 

culture conditions for microbial fermentation, so the 

three factors were adjusted to improve cellulase 

production from Z28 by submerged fermentation. The 

range of each factor and their experiment design matrix 

are shown in Table 1. 

Submerged fermentation medium (g/L): rice straw 

5.0, (NH4)2SO4 2.5, KH2PO4 2.0, MgSO4•7H2O 0.3, 

CaCl2 0.3. The used buffer was NaHPO4-C6H8O7 

buffer (0.2 M). 

 

Cellulase assay 

A rolled filter paper strip (1×6 cm, about 50 mg), as 

well as 1 mL acetate buffer (0.2 M, pH 5.0), was 

incubated with 1 mL diluted cellulase solution. The 

reaction was carried out in a 15×100 mm test tube at 

50 °C without stirring. After 60 min, the DNS (3,5-

Dinitrosalicylic acid) method was used to determine 

the reducing sugars (glucose equivalents) produced. 

One unit of cellulase activity was defined as the 

amount of enzyme required for the formation of 1 

µmol glucose equivalents per minute. 

 

Response surface methodology 

The relationship amongst the three factors was 

expressed by the following second-order equation: 
3 3 3 3

2

0

1 1 1 1

i i ii i ij i j

i i i j i

Y a a X a X a X X
= = = = +

= + + +∑ ∑ ∑∑               (1) 

where Y is the predicted cellulase production, a0 is 

constant, ai, aii and aij are the regression coefficients of 

the RSM model, Xi and Xj are the factor variables. 

Statistical analysis of the data from Box-Behnken 

Design (BBD) was performed to determine the values 

of a0, ai, aii and aij. 

 

Artificial neural network 
In this study, ANN consisted of only one hidden 

(four neurons) layer. There were three (temperature, 

pH and time) and one neuron (cellulase production) in 

the input and output layers of ANN, respectively (Fig. 

1).  

 

Table 1 

BBD matrix of three factors and experimentally determined cellulase activity versus  

RSM and ANN simulated values 

 

Factors 
Levels 

X1 X2 X3 
Y (U/ml) 

-1.00 25 °C 4.5 3 days 

0.00 29 °C 6.0 6 days 

Trial 

+1.00 33 °C 7.5 9 days 

Experimental RSM ANN 

1  +1.00 -1.00 0.00 3.39 ± 0.75 3.01 3.26 

2  +1.00 0.00 -1.00 2.63 ± 0.20 2.75 2.78 

3  +1.00 0.00 +1.00 1.36 ± 0.57 1.89 1.35 

4  +1.00 +1.00 0.00 2.08 ± 0.44 1.81 2.26 

5  0.00 -1.00 -1.00 2.48 ± 0.34 2.74 2.65 

6  0.00 -1.00 +1.00 4.46 ± 0.73 4.31 4.63 

7  0.00 0.00 0.00 5.26 ± 1.11 5.26 5.23 

8  0.00 0.00 0.00 5.26 ± 1.11 5.26 5.23 

9  0.00 0.00 0.00 5.26 ± 1.11 5.26 5.23 

10  0.00 0.00 0.00 5.26 ± 1.11 5.26 5.23 

11  0.00 0.00 0.00 5.26 ± 1.11 5.26 5.23 

12  0.00 +1.00 -1.00 2.13 ± 0.22 2.28 1.99 

13  0.00 +1.00 +1.00 2.08 ± 0.30 1.82 2.07 

14  -1.00 -1.00 0.00 3.76 ± 0.50 4.04 3.83 

15  -1.00 0.00 -1.00 2.63 ± 0.47 2.10 2.56 

16  -1.00 0.00 +1.00 4.19 ± 0.84 4.07 4.17 

17  -1.00 +1.00 0.00 1.93 ± 0.77 2.31 1.84 
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Figure 1: Schematic representation of ANN modelling the relationship between cellulase production and three factors 

(temperature, pH and time) 

 
All the data (input and output ones) in Table 1 were 

scaled as follows: 
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where Xi
*
 and Y

*
 are new scaled data of input and 

output layers, respectively. 

Back-propagation algorithm was used to train a 

random ANN by feeding the scaled data. In the ANN, 

the transfer functions of the hidden and output layers 

are tangent sigmoid and pure linear functions, 

respectively. The mean square error between actual 

and expected output neurons was calculated and 

propagated backward through the network. Then, the 

weight of each layer was adjusted accordingly. 

Backward propagation did not stop until the mean 

square error got to 1×10
-4

. 

 

Genetic algorithm 

Using the trained ANN as the fitness function, a 

genetic algorithm (GA) was implemented to search the 

maximum output (cellulase production). The GA 

procedures consisted of the following steps:  

- Assign a fitness value to each individual of a 

randomly generated population for guiding the 

search;  

- Select individuals with higher fitness values and 

let them undergo genetic operation, such as 

crossover and mutation; 

- Use the newly generated child population as the 

parent population for the next generation and 

then treat them with the same evolutional 

process continuously until the designed 

generation number is reached.
15-16

  

Working parameters, namely total number of 

generation, population size, number of binary coded 

variables, cross-over probability and mutation 

probability were 50, 20, 3, 0.4 and 0.005, respectively. 

 

Software 

RSM was performed by Design Expert 7.0. 

Artifical neural network and genetic algorithm were 

developed by Matlab R2010b. 

 

RESULTS AND DISCUSSION 

RSM-based simulation and optimization 
Based on the statistical analysis of the 

experimental data from Box-Behnken Design in 

Table 1, a quadratic polynomial was established 

to identify the relationship between activity yield 

and three culture conditions as follows: 

1 2 3 1 2 1 3

2 2 2

2 3 1 2 3

5.26 0.38 0.73 0.28 0.13 0.71

0.51 1.28 1.19 1.28

Y X X X X X X X

X X X X X

= + − + − +

− − − −

        (3) 

where Y is cellulase production, and X1, X2 and 

X3 represent temperature, pH and time in coded 

values, respectively. 

With t and P values shown in Table 2, the 

significance of the three factors, their interaction 

and quadratic terms could be considered as: X2 > 

X1 > X3, X1X3 > X2X3 > X1X2 and X3
2
 > X1

2
 > 

X2
2, respectively. The larger the t-value and the 

smaller the p-value was, the higher the 

significance of the corresponding coefficient.  

The analysis of variance is shown in Table 3. 

The F value of the RSM regression equation is 

larger than F0.01 (9.5), which indicates that the 

variance in RSM, in this case, is very significant. 

It was concluded from the F-test of linearity 

square and interaction terms that the main effects 

and the interaction of the examined three factors 

were significant. The effect of the three factors on 

cellulase production was very complicated. It was 

impossible to obtain the maximum cellulase 

production using only the one-factor-at-a-time 

approach. Model-based optimization in this study 

was required. 

Based on Equation 3, the 3D response surface 

diagrams are presented in Figure 2. From the 3D 

diagrams, it is easy to understand the interactions 

between two factors and cellulase production, and 

also to locate their optimum levels. The obtained 

surfaces were very convex and symmetric, 
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suggesting that there were well-defined optimum operating conditions.  

 
 

Table 2 

Standard errors, t and P values of coefficients of regression equation 

 

Model term Standard errors t P 

Intercept 0.19 28.31 < 0.001 

X1 0.15 2.60 0.036 

X2 0.15 -4.99 0.002 

X3 0.15 1.89 0.101 

X1X2 0.21 -0.63 0.551 

X1X3 0.21 3.41 0.011 

X2X3 0.21 -2.44 0.045 

X1
2
 0.20 -6.31 < 0.001 

X2
2
 0.20 -5.89 0.001 

X3
2
 0.20 -6.32 < 0.001 

 
Table 3 

RSM-based analysis of variance for the experimental data of the CCD 

 

Source Degree of freedom Square sum Mean square F P 

Regression 9 31.26 3.47 20.12 < 0.001 

Linearity 3 6.09 2.03 11.75 0.004 

Square 3 22.08 7.36 42.62 < 0.001 

Interaction 3 3.10 1.03 5.98 0.024 

Residual error 7 1.21 0.17   

Lack of fit 3 1.21 0.40 * * 

Pure error 4 0.00 0.00   

Total 16 32.47    

 

After calculating the first-order partial derivate 

of Equation 3, three quadratic equations with 

three variables were obtained. By solving the 

equation set, the predicted maximum cellulase 

production was 5.48 U/mL, where X1 = 29.9 °C, 

X2 = 5.4 and X3 = 6.8 days. Under these 

conditions, three replicated experiments were 

carried out. The obtained experimental cellulase 

production was 5.67 ± 0.32 U/mL. 

 

ANN-based simulation 
Via limited trials, an ANN was built 

successfully for simulating cellulase production. 

The weight and threshold values of each layer, 

which determined the structure of the built ANN, 

were as follows: 
0.1215 2.5161 1.7782

1.8766 0.0116 1.1379
. {1}

0.2845 0.4047 2.0472

1.6421 0.6609 1.9489

. {2} ( 0.2165 0.0108 0.2341 0.1412)

. {1} ( 1.4122 0.7468 0.2829 1.8170)

. {2} (0.1252)

T

T

net iw

net lw

net b

net b

− 
 

− − =
 −

 
− − 

= − −

= − −

=

       (4) 

ANN-based optimization by GA 
Figure 3 shows the evolution of the algorithm 

with successive generations. Starting from 3.43 

U/mL, the average cellulase production 

apparently increased until about the 10
th
 

generation and was 5.75 U/mL at the end of 100 

generations. The maximum cellulase production 

also increased quickly for the first 10 generations 

and reached 5.96 U/mL at the 15
th
 generation, 

then kept invariant. Thus, the maximum cellulase 

production obtained from ANN could be 

considered as 5.96 U/mL. The corresponding 

experimental conditions were the following: X1 = 

29 °C, X2 = 5.5 and X3 = 7.2 days, where the 

experimental cellulase production was 6.01 ± 0.43 

U/mL. 

 
Comparison of ANN and RSM 

Cellulase production simulation results 

obtained by RSM and ANN are shown in Table 1. 

The experimentally determined and ANN 

simulated values were almost identical, as 

compared to the values simulated by the RSM 

model. Except trials 2, 6 and 7~11 (central 
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points), the derivations produced by RSM were 

all larger than those performed by ANN. 

The correlation coefficient, mean absolute, 

relative error, root-mean-square error and 

variance of the RSM-based simulation were 0.96, 

0.21, 0.09%, 0.28 and 0.08, respectively, whereas 

for ANN, the corresponding values were 0.99, 

0.08, 0.03%, 0.10 and 0.01. Mean 

absolute/relative error, root-mean-square error 

and variance of RSM were apparently higher than 

those of ANN, and vice versa for the correlation 

coefficient. These parameters are always used for 

evaluating the simulation performance of a model. 

The smaller the mean deviation, standard 

deviation and root-mean-square error and the 

larger the correlation coefficient were, the more 

precise the simulation. This stated further the 

simulation accuracy of ANN was higher than that 

of RSM. For optimization, ANN gave 6.01 U/mL 

maximum cellulase production, compared to 5.67 

U/ml obtained from RSM. Similar results were 

obtained when simulating and optimizing other 

processes.
16-19

 

The advantage of RSM resides in its ability to 

evaluate the factor contributions/significances 

according the regression analysis of factorial 

experiments, and thereby it can reduce the 

complexity of the process.20-21 However, because 

of its limitation in simulating the data of an 

irregular experimental domain, RSM could only 

exhibit a low order non-linear behaviour to a 

regular experimental region.
22

 The effective use of 

RSM requires a narrow search window (if we 

shrink the search window narrow enough, linear 

correlation may also suffice). The search process 

is highly dependent on the search space. If the 

search space is too wide, either extra experiments 

or good priory knowledge of the system is 

necessary for RSM simulation.
17

 

 

 
(a) X3 = 6.8 days 

 
(b) X2 = 5.4 

 
(c) X1 = 29.9 oC 

 

Figure 2: Three-dimensional response surfaces of cellulase production showing the interactions among temperature, pH 

and time 

 

In contrast, ANN would not suffer from the 

limitation of experimental design and efficient 

ANN simulation requires relatively few 

experiments. Of course, the accuracy would be 

higher when a large number of experiments are 

used to create the non-linear behaviours.
23

 

Moreover, ANN represents the non-linearity in a 

much better way than RSM and can inherently 

capture the arbitrary form of non-linearity.
10-11

 It 

can easily overcome the limitation of RSM 

discussed above. Thus, in the case of ANN, a 

more liberal search space can be chosen; although 

the correlation in that search space is more 

complex than an equation of higher degree.17 On 

the other hand, ANN provides little information 

about the contribution/significance of each factor, 

unless further analysis has been done. Besides, the 

development of ANN requires a large number of 
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iterative calculations, whereas it is only a single 

step calculation for RSM.22 

 

CONCLUSION 

A maximum cellulase production value of 6.01 

U/mL was obtained from ANN simulation, while 

RSM yielded a maximum value of only 5.67 

U/mL. Therefore, ANN could be considered as a 

superior technique compared to RSM, as 

demonstrated in this study. It is believed that 

ANN-based optimization could be applied in 

more complicated systems due to its advanced 

non-linear analysis and mechanistic 

independence. 
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